非循环条件下动脉通道通行时间预测

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2023-01-01 DOI:10.1080/15472450.2021.2023017
Sajjad Shafiei , Eileen Wang , Hanna Grzybowska , Chen Cai
{"title":"非循环条件下动脉通道通行时间预测","authors":"Sajjad Shafiei ,&nbsp;Eileen Wang ,&nbsp;Hanna Grzybowska ,&nbsp;Chen Cai","doi":"10.1080/15472450.2021.2023017","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate travel time prediction for major freeways and corridors is crucial but challenging when road incidents happen. Data-driven models require a large set of historical data to estimate the spatial and temporal correlations between road incidents and traffic dynamics. More often than not, the amount of historical data under non-recurring conditions is limited when it comes to training the models. This paper investigates the application of data-driven models on an enriched database with simulated travel times. A well-calibrated traffic simulation is used to capture the artificial incident’s impact on a major urban corridor in Sydney, Australia. This procedure is repeated for multiple created incidents, resulting in a synthetic dataset validated by the available actual historical data. Several machine learning models, such as Regression Tree, Support Vector Regression, Extreme Gradient Boosting, and Recurrent Neural Networks are trained and tested based on the simulated travel time and incident information. As a baseline model for comparison, the measured travel time at the prediction time is considered equal to multi-step ahead travel time. Based on the results, the data-driven models developed with the simulated data outperformed the baseline, indicating that our approach can be effectively employed in the travel time prediction.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"27 3","pages":"Pages 335-346"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arterial corridor travel time prediction under non-recurring conditions\",\"authors\":\"Sajjad Shafiei ,&nbsp;Eileen Wang ,&nbsp;Hanna Grzybowska ,&nbsp;Chen Cai\",\"doi\":\"10.1080/15472450.2021.2023017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate travel time prediction for major freeways and corridors is crucial but challenging when road incidents happen. Data-driven models require a large set of historical data to estimate the spatial and temporal correlations between road incidents and traffic dynamics. More often than not, the amount of historical data under non-recurring conditions is limited when it comes to training the models. This paper investigates the application of data-driven models on an enriched database with simulated travel times. A well-calibrated traffic simulation is used to capture the artificial incident’s impact on a major urban corridor in Sydney, Australia. This procedure is repeated for multiple created incidents, resulting in a synthetic dataset validated by the available actual historical data. Several machine learning models, such as Regression Tree, Support Vector Regression, Extreme Gradient Boosting, and Recurrent Neural Networks are trained and tested based on the simulated travel time and incident information. As a baseline model for comparison, the measured travel time at the prediction time is considered equal to multi-step ahead travel time. Based on the results, the data-driven models developed with the simulated data outperformed the baseline, indicating that our approach can be effectively employed in the travel time prediction.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"27 3\",\"pages\":\"Pages 335-346\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245022004091\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245022004091","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

当道路事故发生时,准确预测主要高速公路和走廊的行驶时间至关重要,但具有挑战性。数据驱动的模型需要大量的历史数据来估计道路事故和交通动态之间的空间和时间相关性。通常情况下,在训练模型时,非重复性条件下的历史数据量是有限的。本文研究了数据驱动模型在具有模拟旅行时间的丰富数据库中的应用。一个经过良好校准的交通模拟被用来捕捉人工事件对澳大利亚悉尼一条主要城市走廊的影响。对多个创建的事件重复此过程,生成由可用实际历史数据验证的合成数据集。基于模拟的旅行时间和事件信息,训练和测试了几种机器学习模型,如回归树、支持向量回归、极限梯度提升和递归神经网络。作为比较的基线模型,预测时间的测量行程时间被认为等于多步前进行程时间。基于这些结果,用模拟数据开发的数据驱动模型优于基线,表明我们的方法可以有效地用于旅行时间预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arterial corridor travel time prediction under non-recurring conditions

Accurate travel time prediction for major freeways and corridors is crucial but challenging when road incidents happen. Data-driven models require a large set of historical data to estimate the spatial and temporal correlations between road incidents and traffic dynamics. More often than not, the amount of historical data under non-recurring conditions is limited when it comes to training the models. This paper investigates the application of data-driven models on an enriched database with simulated travel times. A well-calibrated traffic simulation is used to capture the artificial incident’s impact on a major urban corridor in Sydney, Australia. This procedure is repeated for multiple created incidents, resulting in a synthetic dataset validated by the available actual historical data. Several machine learning models, such as Regression Tree, Support Vector Regression, Extreme Gradient Boosting, and Recurrent Neural Networks are trained and tested based on the simulated travel time and incident information. As a baseline model for comparison, the measured travel time at the prediction time is considered equal to multi-step ahead travel time. Based on the results, the data-driven models developed with the simulated data outperformed the baseline, indicating that our approach can be effectively employed in the travel time prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Adaptive graph convolutional network-based short-term passenger flow prediction for metro Adaptive green split optimization for traffic control with low penetration rate trajectory data Inferring the number of vehicles between trajectory-observed vehicles Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors Evaluating the impacts of vehicle-mounted Variable Message Signs on passing vehicles: implications for protecting roadside incident and service personnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1