在寻找外星生命的过程中,理性的无知

IF 11.7 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS New Astronomy Reviews Pub Date : 2023-06-01 DOI:10.1016/j.newar.2023.101675
Edward D. Zanders
{"title":"在寻找外星生命的过程中,理性的无知","authors":"Edward D. Zanders","doi":"10.1016/j.newar.2023.101675","DOIUrl":null,"url":null,"abstract":"<div><p>The question “are we alone in the universe?” has been asked through the ages and is beginning to be addressed by deploying spacecraft and advanced observatories capable of detecting biological signatures. Apart from the certainty that life exists on the Earth, there is no clear evidence at the time of writing for extra-terrestrial life (also termed <em>exo-life</em>). Although the sheer number of potentially habitable extrasolar planets in our galaxy alone makes a compelling case for widespread exo-life if taken in isolation, the constraints on the emergence of life imposed by chemistry and biology provide a counterbalance to this optimistic view. In the absence of any clear sign of exo-life and therefore our ignorance about whether it exists or not, the only way forward is to apply scientific knowledge in a rational way to discriminate between different scenarios until such a time that real evidence is forthcoming, if at all. This article reviews the main features of current astrobiological research to speculate on the likelihood of each critical transition in the development of living entities, emphasising the involvement of chemistry and informational macromolecules. It concludes that carbon-based compounds may be widespread on and in exoplanets, but the organisation of these prebiotic molecules into cellular structures with anything like the complexity of the primitive organisms on Earth could be very rare or non-existent. However, if such organisms do arise, the path to multicellularity and the functional organisation required for human capabilities may not be so daunting. Some of the key genetic features required for this development may already be present in primitive cells ready to be activated or repurposed.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"96 ","pages":"Article 101675"},"PeriodicalIF":11.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational ignorance in the search for extra-terrestrial life\",\"authors\":\"Edward D. Zanders\",\"doi\":\"10.1016/j.newar.2023.101675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The question “are we alone in the universe?” has been asked through the ages and is beginning to be addressed by deploying spacecraft and advanced observatories capable of detecting biological signatures. Apart from the certainty that life exists on the Earth, there is no clear evidence at the time of writing for extra-terrestrial life (also termed <em>exo-life</em>). Although the sheer number of potentially habitable extrasolar planets in our galaxy alone makes a compelling case for widespread exo-life if taken in isolation, the constraints on the emergence of life imposed by chemistry and biology provide a counterbalance to this optimistic view. In the absence of any clear sign of exo-life and therefore our ignorance about whether it exists or not, the only way forward is to apply scientific knowledge in a rational way to discriminate between different scenarios until such a time that real evidence is forthcoming, if at all. This article reviews the main features of current astrobiological research to speculate on the likelihood of each critical transition in the development of living entities, emphasising the involvement of chemistry and informational macromolecules. It concludes that carbon-based compounds may be widespread on and in exoplanets, but the organisation of these prebiotic molecules into cellular structures with anything like the complexity of the primitive organisms on Earth could be very rare or non-existent. However, if such organisms do arise, the path to multicellularity and the functional organisation required for human capabilities may not be so daunting. Some of the key genetic features required for this development may already be present in primitive cells ready to be activated or repurposed.</p></div>\",\"PeriodicalId\":19718,\"journal\":{\"name\":\"New Astronomy Reviews\",\"volume\":\"96 \",\"pages\":\"Article 101675\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387647323000039\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy Reviews","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387647323000039","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

“我们在宇宙中是孤独的吗?”这个问题由来已久,并开始通过部署能够探测生物特征的航天器和先进天文台来解决。除了地球上存在生命的确定性之外,在撰写本文时,还没有明确的证据表明外星生命(也称为外星生命)。尽管仅银河系中潜在宜居的太阳系外行星的数量就足以证明,如果孤立地看待,存在广泛的外行星生命,但化学和生物学对生命出现的限制为这一乐观观点提供了平衡。在没有任何明确的外星生命迹象的情况下,因此我们也不知道它是否存在,唯一的出路是以理性的方式应用科学知识来区分不同的场景,直到真正的证据出现(如果有的话)。本文回顾了当前天体生物学研究的主要特点,以推测生命体发展中每一个关键转变的可能性,强调化学和信息大分子的参与。它得出的结论是,碳基化合物可能在系外行星上和系外行星中广泛存在,但将这些益生元分子组织成具有地球上原始生物复杂性的细胞结构可能非常罕见或根本不存在。然而,如果这种生物真的出现了,那么通往多细胞和人类能力所需的功能组织的道路可能就不会那么令人生畏了。这种发育所需的一些关键遗传特征可能已经存在于准备被激活或重新利用的原始细胞中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rational ignorance in the search for extra-terrestrial life

The question “are we alone in the universe?” has been asked through the ages and is beginning to be addressed by deploying spacecraft and advanced observatories capable of detecting biological signatures. Apart from the certainty that life exists on the Earth, there is no clear evidence at the time of writing for extra-terrestrial life (also termed exo-life). Although the sheer number of potentially habitable extrasolar planets in our galaxy alone makes a compelling case for widespread exo-life if taken in isolation, the constraints on the emergence of life imposed by chemistry and biology provide a counterbalance to this optimistic view. In the absence of any clear sign of exo-life and therefore our ignorance about whether it exists or not, the only way forward is to apply scientific knowledge in a rational way to discriminate between different scenarios until such a time that real evidence is forthcoming, if at all. This article reviews the main features of current astrobiological research to speculate on the likelihood of each critical transition in the development of living entities, emphasising the involvement of chemistry and informational macromolecules. It concludes that carbon-based compounds may be widespread on and in exoplanets, but the organisation of these prebiotic molecules into cellular structures with anything like the complexity of the primitive organisms on Earth could be very rare or non-existent. However, if such organisms do arise, the path to multicellularity and the functional organisation required for human capabilities may not be so daunting. Some of the key genetic features required for this development may already be present in primitive cells ready to be activated or repurposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Astronomy Reviews
New Astronomy Reviews 地学天文-天文与天体物理
CiteScore
18.60
自引率
1.70%
发文量
7
审稿时长
11.3 weeks
期刊介绍: New Astronomy Reviews publishes review articles in all fields of astronomy and astrophysics: theoretical, observational and instrumental. This international review journal is written for a broad audience of professional astronomers and astrophysicists. The journal covers solar physics, planetary systems, stellar, galactic and extra-galactic astronomy and astrophysics, as well as cosmology. New Astronomy Reviews is also open for proposals covering interdisciplinary and emerging topics such as astrobiology, astroparticle physics, and astrochemistry.
期刊最新文献
Editorial Board High-redshift cosmology by Gamma-Ray Bursts: An overview Observations of pre- and proto-brown dwarfs in nearby clouds: Paving the way to further constraining theories of brown dwarf formation Exploring Titan’s subsurface: Insights from Cassini RADAR and prospects for future investigations Gamma-ray bursts at extremely small fluence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1