Shiyan Yang , Steven E. Shladover , Xiao-Yun Lu , Hani Ramezani , Aravind Kailas , Osman D. Altan
{"title":"基于贝叶斯回归分析的卡车驾驶员协同自适应巡航控制(CACC)在加州高速公路上的应用","authors":"Shiyan Yang , Steven E. Shladover , Xiao-Yun Lu , Hani Ramezani , Aravind Kailas , Osman D. Altan","doi":"10.1080/15472450.2021.1990051","DOIUrl":null,"url":null,"abstract":"<div><p>Cooperative Adaptive Cruise Control (CACC), as an advanced version of adaptive cruise control (ACC), automates brake and engine controls based on the information received from wireless V2V communications and remote sensors, enabling smaller vehicle-following time gaps. It can improve the safety of vehicle platooning and increase fuel savings. As an extension of our previous investigation of truck drivers’ acceptance of CACC, this case study investigates factors affecting the use of CACC for truck platooning. Nine commercial fleet drivers were recruited to operate two following trucks in a CACC-enabled string on freeways in Northern California. We analyzed the usage of CACC time gaps and its correlation with truck drivers’ stated preferences for these time gaps, and we found that the highest preferred Gap 3 (1.2 s) was used the most. Moreover, a Bayesian regression model was built to show that truck drivers are more likely to disengage CACC when driving in low-speed traffic or on downgrades where this CACC could not provide sufficient braking. In high-speed traffic or on upgrades, truck drivers are more likely to engage CACC, particularly at Gap 3. Truck position, however, does not affect truck drivers’ time gap selection. The findings encourage the adoption of CACC in the trucking industry through implementing driver-preferred time gaps and responsive braking systems, and operating on routes with minimal interference to truck speeds.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"27 1","pages":"Pages 80-91"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Bayesian regression analysis of truck drivers’ use of cooperative adaptive cruise control (CACC) for platooning on California highways\",\"authors\":\"Shiyan Yang , Steven E. Shladover , Xiao-Yun Lu , Hani Ramezani , Aravind Kailas , Osman D. Altan\",\"doi\":\"10.1080/15472450.2021.1990051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cooperative Adaptive Cruise Control (CACC), as an advanced version of adaptive cruise control (ACC), automates brake and engine controls based on the information received from wireless V2V communications and remote sensors, enabling smaller vehicle-following time gaps. It can improve the safety of vehicle platooning and increase fuel savings. As an extension of our previous investigation of truck drivers’ acceptance of CACC, this case study investigates factors affecting the use of CACC for truck platooning. Nine commercial fleet drivers were recruited to operate two following trucks in a CACC-enabled string on freeways in Northern California. We analyzed the usage of CACC time gaps and its correlation with truck drivers’ stated preferences for these time gaps, and we found that the highest preferred Gap 3 (1.2 s) was used the most. Moreover, a Bayesian regression model was built to show that truck drivers are more likely to disengage CACC when driving in low-speed traffic or on downgrades where this CACC could not provide sufficient braking. In high-speed traffic or on upgrades, truck drivers are more likely to engage CACC, particularly at Gap 3. Truck position, however, does not affect truck drivers’ time gap selection. The findings encourage the adoption of CACC in the trucking industry through implementing driver-preferred time gaps and responsive braking systems, and operating on routes with minimal interference to truck speeds.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"27 1\",\"pages\":\"Pages 80-91\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245022004017\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245022004017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
A Bayesian regression analysis of truck drivers’ use of cooperative adaptive cruise control (CACC) for platooning on California highways
Cooperative Adaptive Cruise Control (CACC), as an advanced version of adaptive cruise control (ACC), automates brake and engine controls based on the information received from wireless V2V communications and remote sensors, enabling smaller vehicle-following time gaps. It can improve the safety of vehicle platooning and increase fuel savings. As an extension of our previous investigation of truck drivers’ acceptance of CACC, this case study investigates factors affecting the use of CACC for truck platooning. Nine commercial fleet drivers were recruited to operate two following trucks in a CACC-enabled string on freeways in Northern California. We analyzed the usage of CACC time gaps and its correlation with truck drivers’ stated preferences for these time gaps, and we found that the highest preferred Gap 3 (1.2 s) was used the most. Moreover, a Bayesian regression model was built to show that truck drivers are more likely to disengage CACC when driving in low-speed traffic or on downgrades where this CACC could not provide sufficient braking. In high-speed traffic or on upgrades, truck drivers are more likely to engage CACC, particularly at Gap 3. Truck position, however, does not affect truck drivers’ time gap selection. The findings encourage the adoption of CACC in the trucking industry through implementing driver-preferred time gaps and responsive braking systems, and operating on routes with minimal interference to truck speeds.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.