华北平原冬季雾霾污染期间羰基对大气氧化能力的显著贡献

IF 6.9 Q1 Environmental Science Journal of environmental sciences Pub Date : 2023-06-09 DOI:10.1016/j.jes.2023.06.004
Xue Yang , Gen Zhang , Guang Pan , Guolan Fan , Houyong Zhang , Xuan Ge , Mingyue Du
{"title":"华北平原冬季雾霾污染期间羰基对大气氧化能力的显著贡献","authors":"Xue Yang ,&nbsp;Gen Zhang ,&nbsp;Guang Pan ,&nbsp;Guolan Fan ,&nbsp;Houyong Zhang ,&nbsp;Xuan Ge ,&nbsp;Mingyue Du","doi":"10.1016/j.jes.2023.06.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>Atmospheric carbonyl compounds<span> play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter, for which the reason have not been clearly elucidated. Here we measured carbonyl compounds and other trace gasses together with PM</span></span><sub>2.5</sub> over urban Jinan in North China Plain during the winter. Markedly higher carbonyl concentrations (average: 14.63 ± 4.21 ppbv) were found during wintertime haze pollution, about one to three-times relative to those on non-haze days, with slight difference in chemical composition except formaldehyde (HCHO). HCHO (3.68 ppbv), acetone (3.17 ppbv), and acetaldehyde (CH<sub>3</sub>CHO) (2.83 ppbv) were the three most abundant species, accounting for ∼75% of the total carbonylson both haze and non-haze days. Results from observational-based model (OBM) with atmospheric oxidation capacity (AOC) indicated that AOC significantly increased with the increasing carbonyls during the winter haze events. Carbonyl photolysis have supplied key oxidants such as RO<sub>2</sub> and HO<sub>2</sub>, and thereby enhancing the formation of fine particles and secondary organic aerosols, elucidating the observed haze-carbonyls inter-correlation. Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources. 1-butene was further confirmed to be the major precursor for HCHO. This study confirms the great contribution of carbonyls to AOC, and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"139 ","pages":"Pages 377-388"},"PeriodicalIF":6.9000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significant contribution of carbonyls to atmospheric oxidation capacity (AOC) during the winter haze pollution over North China Plain\",\"authors\":\"Xue Yang ,&nbsp;Gen Zhang ,&nbsp;Guang Pan ,&nbsp;Guolan Fan ,&nbsp;Houyong Zhang ,&nbsp;Xuan Ge ,&nbsp;Mingyue Du\",\"doi\":\"10.1016/j.jes.2023.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Atmospheric carbonyl compounds<span> play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter, for which the reason have not been clearly elucidated. Here we measured carbonyl compounds and other trace gasses together with PM</span></span><sub>2.5</sub> over urban Jinan in North China Plain during the winter. Markedly higher carbonyl concentrations (average: 14.63 ± 4.21 ppbv) were found during wintertime haze pollution, about one to three-times relative to those on non-haze days, with slight difference in chemical composition except formaldehyde (HCHO). HCHO (3.68 ppbv), acetone (3.17 ppbv), and acetaldehyde (CH<sub>3</sub>CHO) (2.83 ppbv) were the three most abundant species, accounting for ∼75% of the total carbonylson both haze and non-haze days. Results from observational-based model (OBM) with atmospheric oxidation capacity (AOC) indicated that AOC significantly increased with the increasing carbonyls during the winter haze events. Carbonyl photolysis have supplied key oxidants such as RO<sub>2</sub> and HO<sub>2</sub>, and thereby enhancing the formation of fine particles and secondary organic aerosols, elucidating the observed haze-carbonyls inter-correlation. Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources. 1-butene was further confirmed to be the major precursor for HCHO. This study confirms the great contribution of carbonyls to AOC, and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.</p></div>\",\"PeriodicalId\":15774,\"journal\":{\"name\":\"Journal of environmental sciences\",\"volume\":\"139 \",\"pages\":\"Pages 377-388\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental sciences\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074223002553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental sciences","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074223002553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

大气中的羰基化合物在自由基的循环中发挥着重要作用,在冬季表现出令人惊讶的高水平,这与颗粒物密切相关,其原因尚未明确阐明。在这里,我们测量了华北平原济南城市冬季的羰基化合物和其他微量气体以及PM2.5。在冬季雾霾污染期间,羰基浓度明显较高(平均值:14.63±4.21ppbv),约为非雾霾日的一到三倍,除甲醛外,化学成分略有差异。六氯环己烷(3.68 ppbv)、丙酮(3.17 ppbv。具有大气氧化能力(AOC)的观测模型(OBM)的结果表明,在冬季雾霾事件中,AOC随着羰基化合物的增加而显著增加。羰基光解提供了RO2和HO2等关键氧化剂,从而增强了细颗粒和二次有机气溶胶的形成,阐明了观察到的雾度羰基的相互关联。羰基化合物在中午和晚上出现峰值的昼夜变化突出了二次形成和一次柴油燃料来源的综合贡献。1-丁烯被进一步证实是六氯环己烷的主要前体。这项研究证实了羰基化合物对AOC的巨大贡献,并表明减少羰基化合物的排放将是缓解NCP地区城市雾霾污染的有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Significant contribution of carbonyls to atmospheric oxidation capacity (AOC) during the winter haze pollution over North China Plain

Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter, for which the reason have not been clearly elucidated. Here we measured carbonyl compounds and other trace gasses together with PM2.5 over urban Jinan in North China Plain during the winter. Markedly higher carbonyl concentrations (average: 14.63 ± 4.21 ppbv) were found during wintertime haze pollution, about one to three-times relative to those on non-haze days, with slight difference in chemical composition except formaldehyde (HCHO). HCHO (3.68 ppbv), acetone (3.17 ppbv), and acetaldehyde (CH3CHO) (2.83 ppbv) were the three most abundant species, accounting for ∼75% of the total carbonylson both haze and non-haze days. Results from observational-based model (OBM) with atmospheric oxidation capacity (AOC) indicated that AOC significantly increased with the increasing carbonyls during the winter haze events. Carbonyl photolysis have supplied key oxidants such as RO2 and HO2, and thereby enhancing the formation of fine particles and secondary organic aerosols, elucidating the observed haze-carbonyls inter-correlation. Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources. 1-butene was further confirmed to be the major precursor for HCHO. This study confirms the great contribution of carbonyls to AOC, and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of environmental sciences
Journal of environmental sciences Environmental Science (General)
CiteScore
12.80
自引率
0.00%
发文量
0
审稿时长
17 days
期刊介绍: Journal of Environmental Sciences is an international peer-reviewed journal established in 1989. It is sponsored by the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, and it is jointly published by Elsevier and Science Press. It aims to foster interdisciplinary communication and promote understanding of significant environmental issues. The journal seeks to publish significant and novel research on the fate and behaviour of emerging contaminants, human impact on the environment, human exposure to environmental contaminants and their health effects, and environmental remediation and management. Original research articles, critical reviews, highlights, and perspectives of high quality are published both in print and online.
期刊最新文献
Editorial Board Core-shell design of UiO66-Fe3O4 configured with EDTA-assisted washing for rapid adsorption and simple recovery of heavy metal pollutants from soil Exposure to methylparaben at environmentally realistic concentrations significantly impairs neuronal health in adult zebrafish Diamine-modified porous indium frameworks with crystalline porous materials (CPM)-5 structure for carbon dioxide fixation under co-catalyst and solvent free conditions Estimation of surface ozone concentration over Jiangsu province using a high-performance deep learning model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1