供应链电动传动系统状态监测的统计机器学习方法比较研究

Salim Lahmiri
{"title":"供应链电动传动系统状态监测的统计机器学习方法比较研究","authors":"Salim Lahmiri","doi":"10.1016/j.sca.2023.100011","DOIUrl":null,"url":null,"abstract":"<div><p>Fault detection and identification are critical for the accurate maintenance and management of industrial machinery. In this regard, data-driven condition monitoring models play an important role in machinery fault diagnosis and management. This study investigates the applicability of various statistical machine learning systems in modeling large data in the condition monitoring of electric drive trains in supply chains. Large data is used to train linear discriminant analysis, K-nearest neighbor algorithm, naïve Bayes, kernel naïve Bayes, decision trees, and support vector machine to distinguish between eleven fault states. The experimental results from the testing data set show that the decision trees achieved 93.8% accuracy, followed by kernel naïve Bayes (91.9%), radial basis function (Gaussian) support vector machine (89.3%), linear discriminant analysis (84.5%), k-NN algorithm (80.5%), and Gaussian naïve Bayes (71.3%). Accordingly, the choice of statistical machine learning algorithm influences classification accuracy related to electric drive fault diagnosis. In addition, decision trees take only few seconds to learn and classify new instances from big data. This makes the selection of decision trees trivial for condition monitoring and management of electric drive trains.</p></div>","PeriodicalId":101186,"journal":{"name":"Supply Chain Analytics","volume":"2 ","pages":"Article 100011"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of statistical machine learning methods for condition monitoring of electric drive trains in supply chains\",\"authors\":\"Salim Lahmiri\",\"doi\":\"10.1016/j.sca.2023.100011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fault detection and identification are critical for the accurate maintenance and management of industrial machinery. In this regard, data-driven condition monitoring models play an important role in machinery fault diagnosis and management. This study investigates the applicability of various statistical machine learning systems in modeling large data in the condition monitoring of electric drive trains in supply chains. Large data is used to train linear discriminant analysis, K-nearest neighbor algorithm, naïve Bayes, kernel naïve Bayes, decision trees, and support vector machine to distinguish between eleven fault states. The experimental results from the testing data set show that the decision trees achieved 93.8% accuracy, followed by kernel naïve Bayes (91.9%), radial basis function (Gaussian) support vector machine (89.3%), linear discriminant analysis (84.5%), k-NN algorithm (80.5%), and Gaussian naïve Bayes (71.3%). Accordingly, the choice of statistical machine learning algorithm influences classification accuracy related to electric drive fault diagnosis. In addition, decision trees take only few seconds to learn and classify new instances from big data. This makes the selection of decision trees trivial for condition monitoring and management of electric drive trains.</p></div>\",\"PeriodicalId\":101186,\"journal\":{\"name\":\"Supply Chain Analytics\",\"volume\":\"2 \",\"pages\":\"Article 100011\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supply Chain Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949863523000109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Analytics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949863523000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

故障检测和识别对于工业机械的精确维护和管理至关重要。在这方面,数据驱动的状态监测模型在机械故障诊断和管理中发挥着重要作用。本研究调查了各种统计机器学习系统在供应链中电动传动系统状态监测中建模大数据的适用性。大数据用于训练线性判别分析、K近邻算法、朴素贝叶斯、核朴素贝叶斯、决策树和支持向量机,以区分11种故障状态。测试数据集的实验结果表明,决策树的准确率为93.8%,其次是核朴素贝叶斯(91.9%)、径向基函数(高斯)支持向量机(89.3%)、线性判别分析(84.5%)、k-NN算法(80.5%)和高斯朴素贝叶斯(71.3%),统计机器学习算法的选择影响与电气传动故障诊断相关的分类精度。此外,决策树只需几秒钟就可以从大数据中学习和分类新实例。这使得决策树的选择对于电动传动系的状态监测和管理来说是微不足道的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative study of statistical machine learning methods for condition monitoring of electric drive trains in supply chains

Fault detection and identification are critical for the accurate maintenance and management of industrial machinery. In this regard, data-driven condition monitoring models play an important role in machinery fault diagnosis and management. This study investigates the applicability of various statistical machine learning systems in modeling large data in the condition monitoring of electric drive trains in supply chains. Large data is used to train linear discriminant analysis, K-nearest neighbor algorithm, naïve Bayes, kernel naïve Bayes, decision trees, and support vector machine to distinguish between eleven fault states. The experimental results from the testing data set show that the decision trees achieved 93.8% accuracy, followed by kernel naïve Bayes (91.9%), radial basis function (Gaussian) support vector machine (89.3%), linear discriminant analysis (84.5%), k-NN algorithm (80.5%), and Gaussian naïve Bayes (71.3%). Accordingly, the choice of statistical machine learning algorithm influences classification accuracy related to electric drive fault diagnosis. In addition, decision trees take only few seconds to learn and classify new instances from big data. This makes the selection of decision trees trivial for condition monitoring and management of electric drive trains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Integrated Multi-Product Biodiesel and Bioethanol Supply Chain Model with Torrefaction Under Uncertainty An agility and performance assessment framework for supply chains using confirmatory factor analysis and structural equation modelling A conceptual digital twin framework for supply chain recovery and resilience A strategic and social analytics model for sustainable packaging in the cosmetic industry A multi-step mixed integer programming heuristic for warehouse layout optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1