Florent Biyeme , André Marie Mbakop , Anne Marie Chana , Joseph Voufo , Jean Raymond Lucien Meva'a
{"title":"利用回归算法和神经网络对生产链中信息流的价值进行分析","authors":"Florent Biyeme , André Marie Mbakop , Anne Marie Chana , Joseph Voufo , Jean Raymond Lucien Meva'a","doi":"10.1016/j.sca.2023.100013","DOIUrl":null,"url":null,"abstract":"<div><p>Managing information flow has always been a challenging and critical driver of performance increase in manufacturing companies. Each bit of information related to the manufacturing process has an information flow value that can impact the process. Recent studies have focused on the traditional classification algorithms methods to analyze the value of information flow. In this research paper, we use regression algorithms to develop an analytics model for the value of information flow in manufacturing shop floors of developing countries. The analysis shows that the Artificial Neural Network (ANN) has the best regression coefficient score of 0.775 with a prediction error of 0.0125. The lowest regression coefficient score of 0.323 was for the Multi-Linear Regression (MLR) with a prediction error of 0.0556. These results help companies use regression algorithms effectively to analyze the value of information flows on the manufacturing chains.</p></div>","PeriodicalId":101186,"journal":{"name":"Supply Chain Analytics","volume":"2 ","pages":"Article 100013"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An analytical model for analyzing the value of information flow in the production chain model using regression algorithms and neural networks\",\"authors\":\"Florent Biyeme , André Marie Mbakop , Anne Marie Chana , Joseph Voufo , Jean Raymond Lucien Meva'a\",\"doi\":\"10.1016/j.sca.2023.100013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Managing information flow has always been a challenging and critical driver of performance increase in manufacturing companies. Each bit of information related to the manufacturing process has an information flow value that can impact the process. Recent studies have focused on the traditional classification algorithms methods to analyze the value of information flow. In this research paper, we use regression algorithms to develop an analytics model for the value of information flow in manufacturing shop floors of developing countries. The analysis shows that the Artificial Neural Network (ANN) has the best regression coefficient score of 0.775 with a prediction error of 0.0125. The lowest regression coefficient score of 0.323 was for the Multi-Linear Regression (MLR) with a prediction error of 0.0556. These results help companies use regression algorithms effectively to analyze the value of information flows on the manufacturing chains.</p></div>\",\"PeriodicalId\":101186,\"journal\":{\"name\":\"Supply Chain Analytics\",\"volume\":\"2 \",\"pages\":\"Article 100013\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supply Chain Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949863523000122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Analytics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949863523000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An analytical model for analyzing the value of information flow in the production chain model using regression algorithms and neural networks
Managing information flow has always been a challenging and critical driver of performance increase in manufacturing companies. Each bit of information related to the manufacturing process has an information flow value that can impact the process. Recent studies have focused on the traditional classification algorithms methods to analyze the value of information flow. In this research paper, we use regression algorithms to develop an analytics model for the value of information flow in manufacturing shop floors of developing countries. The analysis shows that the Artificial Neural Network (ANN) has the best regression coefficient score of 0.775 with a prediction error of 0.0125. The lowest regression coefficient score of 0.323 was for the Multi-Linear Regression (MLR) with a prediction error of 0.0556. These results help companies use regression algorithms effectively to analyze the value of information flows on the manufacturing chains.