首次观察到12C16O2在660 nm附近的吸收带

IF 1.4 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Journal of Molecular Spectroscopy Pub Date : 2023-09-01 DOI:10.1016/j.jms.2023.111843
Yu.G. Borkov, A.M. Solodov, A.A. Solodov, T.M. Petrova, V.I. Perevalov
{"title":"首次观察到12C16O2在660 nm附近的吸收带","authors":"Yu.G. Borkov,&nbsp;A.M. Solodov,&nbsp;A.A. Solodov,&nbsp;T.M. Petrova,&nbsp;V.I. Perevalov","doi":"10.1016/j.jms.2023.111843","DOIUrl":null,"url":null,"abstract":"<div><p>The absorption spectra of carbon dioxide were recorded in the region from 15,000 to 15,300 cm<sup>−1</sup>, using a Bruker IFS 125 HR Fourier transform spectrometer and a 30 m multipass cell with the White type optical system. The recording was performed at a spectral resolution of 0.044 – 0.050 cm<sup>−1</sup>, room temperature, a path length of 1057.95 m and pressures of 185 and 362 mbar. Utilization of a LED as a light source provided a sensitivity (noise equivalent absorption) at the level of <em>k</em><sub>ν</sub> = 1.23 × 10<sup>-10</sup> cm<sup>−1</sup> and allowed detection of a number of lines of two 3005<em>i</em> − 00001 (<em>i</em> = 2,3) bands and several lines of the 60031 – 00001 band of <sup>12</sup>C<sup>16</sup>O<sub>2</sub> with the intensity values down to 10<sup>-30</sup> cm<sup>−1</sup>/(molecule cm<sup>−2</sup>) at 296 K. These bands were observed for the first time. The uncertainty of the line position measurements was estimated to be about 0.005 cm<sup>−1</sup> for the unblended lines with a high signal-to-noise ratio. The uncertainties of the retrieved line intensities for the strongest unblended lines are at the level of 15 %. The spectroscopic constants for observed bands were fitted to the observed line positions. The vibrational transition dipole moments squared of these bands were fitted to the observed line intensities. The measured line positions were compared to those from the HITRAN2020 database and to those predicted with the global effective Hamiltonian. The measured line intensities were compared to the values from the HITRAN2020 database and from the Ames2021 line list.</p></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"397 ","pages":"Article 111843"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The first observation of the 12C16O2 absorption bands near 660 nm\",\"authors\":\"Yu.G. Borkov,&nbsp;A.M. Solodov,&nbsp;A.A. Solodov,&nbsp;T.M. Petrova,&nbsp;V.I. Perevalov\",\"doi\":\"10.1016/j.jms.2023.111843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The absorption spectra of carbon dioxide were recorded in the region from 15,000 to 15,300 cm<sup>−1</sup>, using a Bruker IFS 125 HR Fourier transform spectrometer and a 30 m multipass cell with the White type optical system. The recording was performed at a spectral resolution of 0.044 – 0.050 cm<sup>−1</sup>, room temperature, a path length of 1057.95 m and pressures of 185 and 362 mbar. Utilization of a LED as a light source provided a sensitivity (noise equivalent absorption) at the level of <em>k</em><sub>ν</sub> = 1.23 × 10<sup>-10</sup> cm<sup>−1</sup> and allowed detection of a number of lines of two 3005<em>i</em> − 00001 (<em>i</em> = 2,3) bands and several lines of the 60031 – 00001 band of <sup>12</sup>C<sup>16</sup>O<sub>2</sub> with the intensity values down to 10<sup>-30</sup> cm<sup>−1</sup>/(molecule cm<sup>−2</sup>) at 296 K. These bands were observed for the first time. The uncertainty of the line position measurements was estimated to be about 0.005 cm<sup>−1</sup> for the unblended lines with a high signal-to-noise ratio. The uncertainties of the retrieved line intensities for the strongest unblended lines are at the level of 15 %. The spectroscopic constants for observed bands were fitted to the observed line positions. The vibrational transition dipole moments squared of these bands were fitted to the observed line intensities. The measured line positions were compared to those from the HITRAN2020 database and to those predicted with the global effective Hamiltonian. The measured line intensities were compared to the values from the HITRAN2020 database and from the Ames2021 line list.</p></div>\",\"PeriodicalId\":16367,\"journal\":{\"name\":\"Journal of Molecular Spectroscopy\",\"volume\":\"397 \",\"pages\":\"Article 111843\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Spectroscopy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002228522300108X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002228522300108X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用Bruker IFS 125 HR傅立叶变换光谱仪和带有White型光学系统的30m多程池,在15000至15300 cm−1的区域内记录二氧化碳的吸收光谱。记录的光谱分辨率为0.044–0.050 cm−1,室温,路径长度为1057.95 m,压力为185和362 mbar。使用LED作为光源提供了kμ=1.23×10-10 cm−1水平的灵敏度(噪声等效吸收),并允许检测到12C16O2的两个3005i−00001(i=2,3)带的多条线和60031–00001带的几条线,强度值在296 k时降至10-30 cm−1/(分子cm−2)。这些谱带是第一次被观测到。对于具有高信噪比的非盲测线,测线位置测量的不确定度估计约为0.005 cm−1。最强非盲谱线的检索谱线强度的不确定性在15%的水平上。将观察到的谱带的光谱常数拟合到观察到的线位置。这些谱带的振动跃迁偶极矩平方与观测到的谱线强度相拟合。将测得的线位置与HITRAN2020数据库中的线位置以及用全局有效哈密顿量预测的线位置进行了比较。将测得的线路强度与HITRAN2020数据库和Ames2021线路列表中的值进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The first observation of the 12C16O2 absorption bands near 660 nm

The absorption spectra of carbon dioxide were recorded in the region from 15,000 to 15,300 cm−1, using a Bruker IFS 125 HR Fourier transform spectrometer and a 30 m multipass cell with the White type optical system. The recording was performed at a spectral resolution of 0.044 – 0.050 cm−1, room temperature, a path length of 1057.95 m and pressures of 185 and 362 mbar. Utilization of a LED as a light source provided a sensitivity (noise equivalent absorption) at the level of kν = 1.23 × 10-10 cm−1 and allowed detection of a number of lines of two 3005i − 00001 (i = 2,3) bands and several lines of the 60031 – 00001 band of 12C16O2 with the intensity values down to 10-30 cm−1/(molecule cm−2) at 296 K. These bands were observed for the first time. The uncertainty of the line position measurements was estimated to be about 0.005 cm−1 for the unblended lines with a high signal-to-noise ratio. The uncertainties of the retrieved line intensities for the strongest unblended lines are at the level of 15 %. The spectroscopic constants for observed bands were fitted to the observed line positions. The vibrational transition dipole moments squared of these bands were fitted to the observed line intensities. The measured line positions were compared to those from the HITRAN2020 database and to those predicted with the global effective Hamiltonian. The measured line intensities were compared to the values from the HITRAN2020 database and from the Ames2021 line list.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
21.40%
发文量
94
审稿时长
29 days
期刊介绍: The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.
期刊最新文献
Spectral features for systematic aluminum replacement in N2H2 and c-N4H4 isomers High resolution laser diode spectroscopy of the hot bands of C2HD in the first overtone region of C-H stretching Buffer-gas cooling of hydrogen cyanide quantified by cavity-ringdown spectroscopy Pure rotational spectroscopic measurements on the electronic ground states of Hafnium monosulfide and Thorium monosulfide in highly excited vibrational states Isotopic species, vibrational states and nuclear quadrupole splitting in CH2Cl2 from rotational spectroscopy at 8–18 GHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1