基于结合深度学习算法的分解-集成-重建框架的每小时PM2.5浓度预测

Peilei Cai, Chengyuan Zhang, Jian Chai
{"title":"基于结合深度学习算法的分解-集成-重建框架的每小时PM2.5浓度预测","authors":"Peilei Cai,&nbsp;Chengyuan Zhang,&nbsp;Jian Chai","doi":"10.1016/j.dsm.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate predictions of hourly PM<sub>2.5</sub> concentrations are crucial for preventing the harmful effects of air pollution. In this study, a new decomposition-ensemble framework incorporating the variational mode decomposition method (VMD), econometric forecasting method (autoregressive integrated moving average model, ARIMA), and deep learning techniques (convolutional neural networks (CNN) and temporal convolutional network (TCN)) was developed to model the data characteristics of hourly PM<sub>2.5</sub> concentrations. Taking the PM<sub>2.5</sub> concentration of Lanzhou, Gansu Province, China as the sample, the empirical results demonstrated that the developed decomposition-ensemble framework is significantly superior to the benchmarks with the econometric model, machine learning models, basic deep learning models, and traditional decomposition-ensemble models, within one-, two-, or three-step-ahead. This study verified the effectiveness of the new prediction framework to capture the data patterns of PM<sub>2.5</sub> concentration and can be employed as a meaningful PM<sub>2.5</sub> concentrations prediction tool.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Forecasting hourly PM2.5 concentrations based on decomposition-ensemble-reconstruction framework incorporating deep learning algorithms\",\"authors\":\"Peilei Cai,&nbsp;Chengyuan Zhang,&nbsp;Jian Chai\",\"doi\":\"10.1016/j.dsm.2023.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate predictions of hourly PM<sub>2.5</sub> concentrations are crucial for preventing the harmful effects of air pollution. In this study, a new decomposition-ensemble framework incorporating the variational mode decomposition method (VMD), econometric forecasting method (autoregressive integrated moving average model, ARIMA), and deep learning techniques (convolutional neural networks (CNN) and temporal convolutional network (TCN)) was developed to model the data characteristics of hourly PM<sub>2.5</sub> concentrations. Taking the PM<sub>2.5</sub> concentration of Lanzhou, Gansu Province, China as the sample, the empirical results demonstrated that the developed decomposition-ensemble framework is significantly superior to the benchmarks with the econometric model, machine learning models, basic deep learning models, and traditional decomposition-ensemble models, within one-, two-, or three-step-ahead. This study verified the effectiveness of the new prediction framework to capture the data patterns of PM<sub>2.5</sub> concentration and can be employed as a meaningful PM<sub>2.5</sub> concentrations prediction tool.</p></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764923000085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764923000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

准确预测每小时PM2.5浓度对于防止空气污染的有害影响至关重要。在本研究中,结合变分模式分解方法(VMD)、计量经济预测方法(自回归综合移动平均模型,ARIMA)和深度学习技术(卷积神经网络(CNN)和时间卷积网络(TCN)),开发了一个新的分解集成框架,对PM2.5小时浓度的数据特征进行建模。以中国甘肃省兰州市PM2.5浓度为样本,实证结果表明,所开发的分解集成框架显著优于计量经济模型、机器学习模型、基础深度学习模型和传统分解集成模型的基准,领先一步、两步或三步。本研究验证了新预测框架捕捉PM2.5浓度数据模式的有效性,可作为一种有意义的PM2.5浓度预测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting hourly PM2.5 concentrations based on decomposition-ensemble-reconstruction framework incorporating deep learning algorithms

Accurate predictions of hourly PM2.5 concentrations are crucial for preventing the harmful effects of air pollution. In this study, a new decomposition-ensemble framework incorporating the variational mode decomposition method (VMD), econometric forecasting method (autoregressive integrated moving average model, ARIMA), and deep learning techniques (convolutional neural networks (CNN) and temporal convolutional network (TCN)) was developed to model the data characteristics of hourly PM2.5 concentrations. Taking the PM2.5 concentration of Lanzhou, Gansu Province, China as the sample, the empirical results demonstrated that the developed decomposition-ensemble framework is significantly superior to the benchmarks with the econometric model, machine learning models, basic deep learning models, and traditional decomposition-ensemble models, within one-, two-, or three-step-ahead. This study verified the effectiveness of the new prediction framework to capture the data patterns of PM2.5 concentration and can be employed as a meaningful PM2.5 concentrations prediction tool.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
期刊最新文献
Comparative study of IoT- and AI-based computing disease detection approaches Forecast Uncertainties Real-Time Data-Driven Compensation Scheme for Optimal Storage Control Dual-market quantitative trading: The dynamics of liquidity and turnover in financial markets A Model for Predicting Dropout of Higher Education Students Value Realization of Intelligent Emergency Management: Research Framework from Technology Enabling to Value Creation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1