Engin Yıldırım , Mehmet Fatih Sert , Burcu Kartal , Şuayyip Çalış
{"title":"不遵守欧洲人权法院判决:机器学习分析","authors":"Engin Yıldırım , Mehmet Fatih Sert , Burcu Kartal , Şuayyip Çalış","doi":"10.1016/j.irle.2023.106167","DOIUrl":null,"url":null,"abstract":"<div><p>The paper investigates all (971) non-executed pending leading cases of the European Court of Human Rights (ECtHR) between 2012 and 2020 through Machine Learning (ML) techniques. Drawing on the extant scholarship, our interest on compliance has centred on state level and case level variables. For the identification of important variables, four databases have been used. Each country party to the European Convention on Human Rights (ECHR) received 232 distinct factors for eight years. Since we aim to make a parameter estimation for a high-dimensional data set, Simulated Annealing (SA) is employed as feature selection method. In the state level analysis, Support Vector Regression (SVR) model has been applied yielding the coefficients of the variables, which have been found to be important in spelling out non-compliance with the ECtHR decisions. For the case level analysis, different cluster techniques have been utilized and the countries have been grouped into four different clusters. We have found that the states that have relatively high levels of equality before the law, protection of individual liberties, social class equality with regard to enjoying civil liberties, access to justice and free and autonomous election management arrangements, are less susceptible to non-compliance of the decisions of the ECtHR. For the case level analysis, type of violated rights, the existence of dissent in the decision and dissenting votes of national judges for their appointing states affect the compliance behaviour of the states. In addition, a notable result of the research is that if a national judge casts a dissenting vote against the violation judgment of the ECtHR involving the state that appointed him/her, the judgment is likely not to be executed by the respondent state.</p></div>","PeriodicalId":47202,"journal":{"name":"International Review of Law and Economics","volume":"76 ","pages":"Article 106167"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-compliance of the European Court of Human Rights decisions: A machine learning analysis\",\"authors\":\"Engin Yıldırım , Mehmet Fatih Sert , Burcu Kartal , Şuayyip Çalış\",\"doi\":\"10.1016/j.irle.2023.106167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper investigates all (971) non-executed pending leading cases of the European Court of Human Rights (ECtHR) between 2012 and 2020 through Machine Learning (ML) techniques. Drawing on the extant scholarship, our interest on compliance has centred on state level and case level variables. For the identification of important variables, four databases have been used. Each country party to the European Convention on Human Rights (ECHR) received 232 distinct factors for eight years. Since we aim to make a parameter estimation for a high-dimensional data set, Simulated Annealing (SA) is employed as feature selection method. In the state level analysis, Support Vector Regression (SVR) model has been applied yielding the coefficients of the variables, which have been found to be important in spelling out non-compliance with the ECtHR decisions. For the case level analysis, different cluster techniques have been utilized and the countries have been grouped into four different clusters. We have found that the states that have relatively high levels of equality before the law, protection of individual liberties, social class equality with regard to enjoying civil liberties, access to justice and free and autonomous election management arrangements, are less susceptible to non-compliance of the decisions of the ECtHR. For the case level analysis, type of violated rights, the existence of dissent in the decision and dissenting votes of national judges for their appointing states affect the compliance behaviour of the states. In addition, a notable result of the research is that if a national judge casts a dissenting vote against the violation judgment of the ECtHR involving the state that appointed him/her, the judgment is likely not to be executed by the respondent state.</p></div>\",\"PeriodicalId\":47202,\"journal\":{\"name\":\"International Review of Law and Economics\",\"volume\":\"76 \",\"pages\":\"Article 106167\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Law and Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144818823000455\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Law and Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144818823000455","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
Non-compliance of the European Court of Human Rights decisions: A machine learning analysis
The paper investigates all (971) non-executed pending leading cases of the European Court of Human Rights (ECtHR) between 2012 and 2020 through Machine Learning (ML) techniques. Drawing on the extant scholarship, our interest on compliance has centred on state level and case level variables. For the identification of important variables, four databases have been used. Each country party to the European Convention on Human Rights (ECHR) received 232 distinct factors for eight years. Since we aim to make a parameter estimation for a high-dimensional data set, Simulated Annealing (SA) is employed as feature selection method. In the state level analysis, Support Vector Regression (SVR) model has been applied yielding the coefficients of the variables, which have been found to be important in spelling out non-compliance with the ECtHR decisions. For the case level analysis, different cluster techniques have been utilized and the countries have been grouped into four different clusters. We have found that the states that have relatively high levels of equality before the law, protection of individual liberties, social class equality with regard to enjoying civil liberties, access to justice and free and autonomous election management arrangements, are less susceptible to non-compliance of the decisions of the ECtHR. For the case level analysis, type of violated rights, the existence of dissent in the decision and dissenting votes of national judges for their appointing states affect the compliance behaviour of the states. In addition, a notable result of the research is that if a national judge casts a dissenting vote against the violation judgment of the ECtHR involving the state that appointed him/her, the judgment is likely not to be executed by the respondent state.
期刊介绍:
The International Review of Law and Economics provides a forum for interdisciplinary research at the interface of law and economics. IRLE is international in scope and audience and particularly welcomes both theoretical and empirical papers on comparative law and economics, globalization and legal harmonization, and the endogenous emergence of legal institutions, in addition to more traditional legal topics.