层厚和激光能量密度对激光粉末床熔合增材制造哈氏合金X再结晶行为的影响

IF 4.2 Q2 ENGINEERING, MANUFACTURING Additive manufacturing letters Pub Date : 2023-10-19 DOI:10.1016/j.addlet.2023.100182
Faraz Deirmina , Olutayo Adegoke , Matteo Del Col , Massimo Pellizzari
{"title":"层厚和激光能量密度对激光粉末床熔合增材制造哈氏合金X再结晶行为的影响","authors":"Faraz Deirmina ,&nbsp;Olutayo Adegoke ,&nbsp;Matteo Del Col ,&nbsp;Massimo Pellizzari","doi":"10.1016/j.addlet.2023.100182","DOIUrl":null,"url":null,"abstract":"<div><p>A single-phase Ni-superalloy (Hastelloy X) was fabricated by laser powder bed fusion (L-PBF) using different layer-thicknesses (i.e., 40, 60, 80, and 120 µm), by implementing different optimized volumetric laser energy densities (i.e., VED of 67, 44, 31, and 35 J/mm<sup>3</sup>). As-built (AB) microstructure, grain morphology, and the recrystallization kinetics were systematically dependent on VED which generally decreases by increasing layer thickness. An increased VED led to a columnar grain morphology, strong texture, large lattice micro-strain, high fraction of low angle boundaries, and increased yield strength. Electron back scattered diffraction (EBSD) analysis revealed that also the recrystallization kinetics was significantly dependent on VED. By decreasing the VED, recrystallization was largely suppressed because of the lower dislocation density in the AB state. A processing map to study the recrystallization as a function of VED, and solution annealing temperature is proposed.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100182"},"PeriodicalIF":4.2000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of layer thickness, and laser energy density on the recrystallization behavior of additively manufactured Hastelloy X by laser powder bed fusion\",\"authors\":\"Faraz Deirmina ,&nbsp;Olutayo Adegoke ,&nbsp;Matteo Del Col ,&nbsp;Massimo Pellizzari\",\"doi\":\"10.1016/j.addlet.2023.100182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A single-phase Ni-superalloy (Hastelloy X) was fabricated by laser powder bed fusion (L-PBF) using different layer-thicknesses (i.e., 40, 60, 80, and 120 µm), by implementing different optimized volumetric laser energy densities (i.e., VED of 67, 44, 31, and 35 J/mm<sup>3</sup>). As-built (AB) microstructure, grain morphology, and the recrystallization kinetics were systematically dependent on VED which generally decreases by increasing layer thickness. An increased VED led to a columnar grain morphology, strong texture, large lattice micro-strain, high fraction of low angle boundaries, and increased yield strength. Electron back scattered diffraction (EBSD) analysis revealed that also the recrystallization kinetics was significantly dependent on VED. By decreasing the VED, recrystallization was largely suppressed because of the lower dislocation density in the AB state. A processing map to study the recrystallization as a function of VED, and solution annealing temperature is proposed.</p></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":\"7 \",\"pages\":\"Article 100182\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369023000622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369023000622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

采用不同的层厚度(即40、60、80和120µm),通过实施不同的优化体积激光能量密度(即67、44、31和35J/mm3的VED),通过激光粉末床熔融(L-PBF)制备了单相镍超合金(Hastelloy X)。竣工(AB)微观结构、晶粒形态和再结晶动力学系统地依赖于VED,VED通常随着层厚度的增加而降低。VED的增加导致柱状晶粒形态、强织构、大的晶格微应变、高比例的低角度边界和增加的屈服强度。电子背散射衍射(EBSD)分析表明,再结晶动力学也显著依赖于VED。通过降低VED,由于AB态的位错密度较低,再结晶在很大程度上受到抑制。提出了一个研究再结晶与VED和固溶退火温度关系的工艺图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of layer thickness, and laser energy density on the recrystallization behavior of additively manufactured Hastelloy X by laser powder bed fusion

A single-phase Ni-superalloy (Hastelloy X) was fabricated by laser powder bed fusion (L-PBF) using different layer-thicknesses (i.e., 40, 60, 80, and 120 µm), by implementing different optimized volumetric laser energy densities (i.e., VED of 67, 44, 31, and 35 J/mm3). As-built (AB) microstructure, grain morphology, and the recrystallization kinetics were systematically dependent on VED which generally decreases by increasing layer thickness. An increased VED led to a columnar grain morphology, strong texture, large lattice micro-strain, high fraction of low angle boundaries, and increased yield strength. Electron back scattered diffraction (EBSD) analysis revealed that also the recrystallization kinetics was significantly dependent on VED. By decreasing the VED, recrystallization was largely suppressed because of the lower dislocation density in the AB state. A processing map to study the recrystallization as a function of VED, and solution annealing temperature is proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
期刊最新文献
A new process route for the additive manufacturing of a high nitrogen containing martensitic stainless steel - A feasibility study Additive manufacturing simulations: An approach based on space partitioning and dynamic 3D mesh adaptation Understanding the effect of pre-sintering scanning strategy on the relative density of Zr-modified Al7075 processed by laser powder bed fusion Mechanical performance of laser powder bed fused Ti-6Al-4V: The influence of filter condition and part location Area-based composition predictions of materials fabricated using simultaneous wire-powder-directed energy deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1