{"title":"电力通信网故障独立路径保护预配置周期的增强","authors":"Bin Li , Chao Lu , Bing Qi , Yi Sun , Jian Han","doi":"10.1016/j.osn.2023.100731","DOIUrl":null,"url":null,"abstract":"<div><p><span>For the purpose of improving the resources utilization efficiency and decrease network redundancy of electric power communication network (EPCN), the paper explores using failure independent path protection preconfigured cycle (FIPP p-Cycle) to provide backup paths for electric communication service and presents a protection algorithm of enhanced FIPP p-Cycle with traffic grooming (EFIPP-TG). Firstly, the multiplexing conditions of FIPP p-Cycle are analyzed specifically, and we propose a FIPP p-Cycle multiplexing algorithm to improve the utilization efficiency of backup resources. Then segment protection algorithm for working path is designed to decrease service blocking ratio as much as possible. In addition, by taking advantage of traffic grooming strategy, the routing paths of services are optimized, yielding effective decrease of network </span>blocking probability<span><span>. Simulation results from different topologies demonstrate that compared with traditional FIPP p-Cycle scheme, other p-Cycle based protection algorithms and shared backup path protection algorithm, the proposed EFIPP-TG algorithm can significantly reduce the redundancy and blocking probability of networks, shorten the length of backup path and hence improve the reliability of service and performance of network </span>survivability.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"48 ","pages":"Article 100731"},"PeriodicalIF":1.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancement of failure independent path protection preconfigured cycles for electric power communication networks\",\"authors\":\"Bin Li , Chao Lu , Bing Qi , Yi Sun , Jian Han\",\"doi\":\"10.1016/j.osn.2023.100731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>For the purpose of improving the resources utilization efficiency and decrease network redundancy of electric power communication network (EPCN), the paper explores using failure independent path protection preconfigured cycle (FIPP p-Cycle) to provide backup paths for electric communication service and presents a protection algorithm of enhanced FIPP p-Cycle with traffic grooming (EFIPP-TG). Firstly, the multiplexing conditions of FIPP p-Cycle are analyzed specifically, and we propose a FIPP p-Cycle multiplexing algorithm to improve the utilization efficiency of backup resources. Then segment protection algorithm for working path is designed to decrease service blocking ratio as much as possible. In addition, by taking advantage of traffic grooming strategy, the routing paths of services are optimized, yielding effective decrease of network </span>blocking probability<span><span>. Simulation results from different topologies demonstrate that compared with traditional FIPP p-Cycle scheme, other p-Cycle based protection algorithms and shared backup path protection algorithm, the proposed EFIPP-TG algorithm can significantly reduce the redundancy and blocking probability of networks, shorten the length of backup path and hence improve the reliability of service and performance of network </span>survivability.</span></p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"48 \",\"pages\":\"Article 100731\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1573427723000024\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427723000024","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Enhancement of failure independent path protection preconfigured cycles for electric power communication networks
For the purpose of improving the resources utilization efficiency and decrease network redundancy of electric power communication network (EPCN), the paper explores using failure independent path protection preconfigured cycle (FIPP p-Cycle) to provide backup paths for electric communication service and presents a protection algorithm of enhanced FIPP p-Cycle with traffic grooming (EFIPP-TG). Firstly, the multiplexing conditions of FIPP p-Cycle are analyzed specifically, and we propose a FIPP p-Cycle multiplexing algorithm to improve the utilization efficiency of backup resources. Then segment protection algorithm for working path is designed to decrease service blocking ratio as much as possible. In addition, by taking advantage of traffic grooming strategy, the routing paths of services are optimized, yielding effective decrease of network blocking probability. Simulation results from different topologies demonstrate that compared with traditional FIPP p-Cycle scheme, other p-Cycle based protection algorithms and shared backup path protection algorithm, the proposed EFIPP-TG algorithm can significantly reduce the redundancy and blocking probability of networks, shorten the length of backup path and hence improve the reliability of service and performance of network survivability.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks