作为颗粒状介质的太阳系小天体

IF 27.8 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS The Astronomy and Astrophysics Review Pub Date : 2019-06-25 DOI:10.1007/s00159-019-0117-5
D. Hestroffer, P. Sánchez, L. Staron, A. Campo Bagatin, S. Eggl, W. Losert, N. Murdoch, E. Opsomer, F. Radjai, D. C. Richardson, M. Salazar, D. J. Scheeres, S. Schwartz, N. Taberlet, H. Yano
{"title":"作为颗粒状介质的太阳系小天体","authors":"D. Hestroffer,&nbsp;P. Sánchez,&nbsp;L. Staron,&nbsp;A. Campo Bagatin,&nbsp;S. Eggl,&nbsp;W. Losert,&nbsp;N. Murdoch,&nbsp;E. Opsomer,&nbsp;F. Radjai,&nbsp;D. C. Richardson,&nbsp;M. Salazar,&nbsp;D. J. Scheeres,&nbsp;S. Schwartz,&nbsp;N. Taberlet,&nbsp;H. Yano","doi":"10.1007/s00159-019-0117-5","DOIUrl":null,"url":null,"abstract":"<p>Asteroids and other Small Solar System Bodies (SSSBs) are of high general and scientific interest in many aspects. The origin, formation, and evolution of our Solar System (and other planetary systems) can be better understood by analysing the constitution and physical properties of small bodies in the Solar System. Currently, two space missions (Hayabusa2, OSIRIS-REx) have recently arrived at their respective targets and will bring a sample of the asteroids back to Earth. Other small body missions have also been selected by, or proposed to, space agencies. The threat posed to our planet by near-Earth objects (NEOs) is also considered at the international level, and this has prompted dedicated research on possible mitigation techniques. The DART mission, for example, will test the kinetic impact technique. Even ideas for industrial exploitation have risen during the last years. Lastly, the origin of water and life on Earth appears to be connected to asteroids. Hence, future space mission projects will undoubtedly target some asteroids or other SSSBs. In all these cases and research topics, specific knowledge of the structure and mechanical behaviour of the surface as well as the bulk of those celestial bodies is crucial. In contrast to large telluric planets and dwarf planets, a large proportion of such small bodies is believed to consist of gravitational aggregates (‘rubble piles’) with no—or low—internal cohesion, with varying macro-porosity and surface properties (from smooth regolith covered terrain, to very rough collection of boulders), and varying topography (craters, depressions, ridges). Bodies with such structure can sustain some plastic deformation without being disrupted in contrast to the classical visco-elastic models that are generally valid for planets, dwarf planets, and large satellites. These SSSBs are hence better described through granular mechanics theories, which have been a subject of intense theoretical, experimental, and numerical research over the last four decades. This being the case, it has been necessary to use the theoretical, numerical and experimental tools developed within soil mechanics, granular dynamics, celestial mechanics, chemistry, condensed matter physics, planetary and computer sciences, to name the main ones, in order to understand the data collected and analysed by observational astronomy (visible, thermal, and radio), and different space missions. In this paper, we present a review of the multi-disciplinary research carried out by these different scientific communities in an effort to study SSSBs.</p>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"27 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00159-019-0117-5","citationCount":"31","resultStr":"{\"title\":\"Small Solar System Bodies as granular media\",\"authors\":\"D. Hestroffer,&nbsp;P. Sánchez,&nbsp;L. Staron,&nbsp;A. Campo Bagatin,&nbsp;S. Eggl,&nbsp;W. Losert,&nbsp;N. Murdoch,&nbsp;E. Opsomer,&nbsp;F. Radjai,&nbsp;D. C. Richardson,&nbsp;M. Salazar,&nbsp;D. J. Scheeres,&nbsp;S. Schwartz,&nbsp;N. Taberlet,&nbsp;H. Yano\",\"doi\":\"10.1007/s00159-019-0117-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Asteroids and other Small Solar System Bodies (SSSBs) are of high general and scientific interest in many aspects. The origin, formation, and evolution of our Solar System (and other planetary systems) can be better understood by analysing the constitution and physical properties of small bodies in the Solar System. Currently, two space missions (Hayabusa2, OSIRIS-REx) have recently arrived at their respective targets and will bring a sample of the asteroids back to Earth. Other small body missions have also been selected by, or proposed to, space agencies. The threat posed to our planet by near-Earth objects (NEOs) is also considered at the international level, and this has prompted dedicated research on possible mitigation techniques. The DART mission, for example, will test the kinetic impact technique. Even ideas for industrial exploitation have risen during the last years. Lastly, the origin of water and life on Earth appears to be connected to asteroids. Hence, future space mission projects will undoubtedly target some asteroids or other SSSBs. In all these cases and research topics, specific knowledge of the structure and mechanical behaviour of the surface as well as the bulk of those celestial bodies is crucial. In contrast to large telluric planets and dwarf planets, a large proportion of such small bodies is believed to consist of gravitational aggregates (‘rubble piles’) with no—or low—internal cohesion, with varying macro-porosity and surface properties (from smooth regolith covered terrain, to very rough collection of boulders), and varying topography (craters, depressions, ridges). Bodies with such structure can sustain some plastic deformation without being disrupted in contrast to the classical visco-elastic models that are generally valid for planets, dwarf planets, and large satellites. These SSSBs are hence better described through granular mechanics theories, which have been a subject of intense theoretical, experimental, and numerical research over the last four decades. This being the case, it has been necessary to use the theoretical, numerical and experimental tools developed within soil mechanics, granular dynamics, celestial mechanics, chemistry, condensed matter physics, planetary and computer sciences, to name the main ones, in order to understand the data collected and analysed by observational astronomy (visible, thermal, and radio), and different space missions. In this paper, we present a review of the multi-disciplinary research carried out by these different scientific communities in an effort to study SSSBs.</p>\",\"PeriodicalId\":785,\"journal\":{\"name\":\"The Astronomy and Astrophysics Review\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":27.8000,\"publicationDate\":\"2019-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00159-019-0117-5\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astronomy and Astrophysics Review\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00159-019-0117-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-019-0117-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 31

摘要

小行星和其他太阳系小天体(SSSBs)在许多方面具有很高的普遍和科学意义。通过分析太阳系中小天体的构成和物理特性,我们可以更好地理解太阳系(和其他行星系统)的起源、形成和演化。目前,两个太空任务(隼鸟2号和OSIRIS-REx)最近已经到达了各自的目标,并将把小行星的样本带回地球。空间机构也选择了其他小型天体任务,或向其提出了建议。近地天体对地球构成的威胁也在国际一级得到考虑,这促使人们专门研究可能的缓解技术。例如,DART任务将测试动能撞击技术。就连工业开发的想法在过去几年里也出现了。最后,地球上的水和生命的起源似乎与小行星有关。因此,未来的太空任务项目无疑将以一些小行星或其他sssb为目标。在所有这些情况和研究课题中,对表面结构和机械行为以及这些天体的大部分的具体知识是至关重要的。与大型大地行星和矮行星相比,这种小天体的很大一部分被认为是由没有或低内部凝聚力的引力聚集体(“碎石堆”)组成的,具有不同的宏观孔隙度和表面特性(从光滑的风化层覆盖的地形,到非常粗糙的巨石集合),以及不同的地形(陨石坑,洼地,山脊)。与通常适用于行星、矮行星和大型卫星的经典粘弹性模型相比,具有这种结构的天体可以承受一些塑性变形而不会被破坏。因此,通过颗粒力学理论可以更好地描述这些SSSBs,在过去的四十年中,颗粒力学理论一直是一个激烈的理论、实验和数值研究的主题。在这种情况下,有必要使用在土壤力学、颗粒动力学、天体力学、化学、凝聚态物理、行星和计算机科学等领域发展起来的理论、数值和实验工具,以便理解观测天文学(可见光、热学和无线电)和不同的太空任务收集和分析的数据。在本文中,我们介绍了这些不同的科学界在研究SSSBs方面所进行的多学科研究的综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small Solar System Bodies as granular media

Asteroids and other Small Solar System Bodies (SSSBs) are of high general and scientific interest in many aspects. The origin, formation, and evolution of our Solar System (and other planetary systems) can be better understood by analysing the constitution and physical properties of small bodies in the Solar System. Currently, two space missions (Hayabusa2, OSIRIS-REx) have recently arrived at their respective targets and will bring a sample of the asteroids back to Earth. Other small body missions have also been selected by, or proposed to, space agencies. The threat posed to our planet by near-Earth objects (NEOs) is also considered at the international level, and this has prompted dedicated research on possible mitigation techniques. The DART mission, for example, will test the kinetic impact technique. Even ideas for industrial exploitation have risen during the last years. Lastly, the origin of water and life on Earth appears to be connected to asteroids. Hence, future space mission projects will undoubtedly target some asteroids or other SSSBs. In all these cases and research topics, specific knowledge of the structure and mechanical behaviour of the surface as well as the bulk of those celestial bodies is crucial. In contrast to large telluric planets and dwarf planets, a large proportion of such small bodies is believed to consist of gravitational aggregates (‘rubble piles’) with no—or low—internal cohesion, with varying macro-porosity and surface properties (from smooth regolith covered terrain, to very rough collection of boulders), and varying topography (craters, depressions, ridges). Bodies with such structure can sustain some plastic deformation without being disrupted in contrast to the classical visco-elastic models that are generally valid for planets, dwarf planets, and large satellites. These SSSBs are hence better described through granular mechanics theories, which have been a subject of intense theoretical, experimental, and numerical research over the last four decades. This being the case, it has been necessary to use the theoretical, numerical and experimental tools developed within soil mechanics, granular dynamics, celestial mechanics, chemistry, condensed matter physics, planetary and computer sciences, to name the main ones, in order to understand the data collected and analysed by observational astronomy (visible, thermal, and radio), and different space missions. In this paper, we present a review of the multi-disciplinary research carried out by these different scientific communities in an effort to study SSSBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Astronomy and Astrophysics Review
The Astronomy and Astrophysics Review 地学天文-天文与天体物理
CiteScore
45.00
自引率
0.80%
发文量
7
期刊介绍: The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.
期刊最新文献
Cepheids as distance indicators and stellar tracers Experimental studies of black holes: status and future prospects The formation and cosmic evolution of dust in the early Universe: I. Dust sources The Fermi/eROSITA bubbles: a look into the nuclear outflow from the Milky Way Dynamics and clouds in planetary atmospheres from telescopic observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1