金属盐溶液中聚酰胺微塑料光催化降解的高分辨质谱分析

IF 6.9 Q1 Environmental Science Journal of environmental sciences Pub Date : 2023-06-22 DOI:10.1016/j.jes.2023.06.018
Yunjin Zhong, Lebing Zhuo, Wangyang Lu
{"title":"金属盐溶液中聚酰胺微塑料光催化降解的高分辨质谱分析","authors":"Yunjin Zhong,&nbsp;Lebing Zhuo,&nbsp;Wangyang Lu","doi":"10.1016/j.jes.2023.06.018","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Microplastic pollution has become one of the most concerned focuses in the world. Among many treatment methods, photocatalysis is considered to be one of the most environmentally friendly methods. In this work, the </span>photodegradation behavior of polyamide microplastics is studied by using polyamide 6 PA6) as model microplastics and FeCl</span><sub>3</sub> as catalyst. It is hoped that the PA6 fiber can be effectively degraded by utilizing the strong oxidizing active species that can be produced after FeCl<sub>3</sub> is irradiated in water. The results shows that PA6 fiber can be almost completely degraded after 10 days of irradiation in FeCl<sub>3</sub><span> aqueous solution, indicating that it is promising to use this new method to solve the problem of PA6 type microplastics. In addition, the chain scission mechanism and degradation process of PA6 are analyzed in detail by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS), which provides a new insight for the study of polymer degradation mechanism.</span></p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"139 ","pages":"Pages 473-482"},"PeriodicalIF":6.9000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of photocatalytic degradation of polyamide microplastics in metal salt solution by high resolution mass spectrometry\",\"authors\":\"Yunjin Zhong,&nbsp;Lebing Zhuo,&nbsp;Wangyang Lu\",\"doi\":\"10.1016/j.jes.2023.06.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Microplastic pollution has become one of the most concerned focuses in the world. Among many treatment methods, photocatalysis is considered to be one of the most environmentally friendly methods. In this work, the </span>photodegradation behavior of polyamide microplastics is studied by using polyamide 6 PA6) as model microplastics and FeCl</span><sub>3</sub> as catalyst. It is hoped that the PA6 fiber can be effectively degraded by utilizing the strong oxidizing active species that can be produced after FeCl<sub>3</sub> is irradiated in water. The results shows that PA6 fiber can be almost completely degraded after 10 days of irradiation in FeCl<sub>3</sub><span> aqueous solution, indicating that it is promising to use this new method to solve the problem of PA6 type microplastics. In addition, the chain scission mechanism and degradation process of PA6 are analyzed in detail by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS), which provides a new insight for the study of polymer degradation mechanism.</span></p></div>\",\"PeriodicalId\":15774,\"journal\":{\"name\":\"Journal of environmental sciences\",\"volume\":\"139 \",\"pages\":\"Pages 473-482\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental sciences\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074223002711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental sciences","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074223002711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

微塑料污染已成为全世界关注的焦点之一。在许多处理方法中,光催化被认为是最环保的方法之一。以聚酰胺6(PA6)为模型微塑料,FeCl3为催化剂,研究了聚酰胺微塑料的光降解行为。希望通过利用FeCl3在水中照射后产生的强氧化活性物质,可以有效地降解PA6纤维。结果表明,PA6纤维在FeCl3水溶液中辐照10天后几乎可以完全降解,表明用这种新方法解决PA6型微塑料的问题是有希望的。此外,通过超高效液相色谱-串联质谱(UPLC-MS)对PA6的断链机理和降解过程进行了详细分析,为聚合物降解机理的研究提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of photocatalytic degradation of polyamide microplastics in metal salt solution by high resolution mass spectrometry

Microplastic pollution has become one of the most concerned focuses in the world. Among many treatment methods, photocatalysis is considered to be one of the most environmentally friendly methods. In this work, the photodegradation behavior of polyamide microplastics is studied by using polyamide 6 PA6) as model microplastics and FeCl3 as catalyst. It is hoped that the PA6 fiber can be effectively degraded by utilizing the strong oxidizing active species that can be produced after FeCl3 is irradiated in water. The results shows that PA6 fiber can be almost completely degraded after 10 days of irradiation in FeCl3 aqueous solution, indicating that it is promising to use this new method to solve the problem of PA6 type microplastics. In addition, the chain scission mechanism and degradation process of PA6 are analyzed in detail by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS), which provides a new insight for the study of polymer degradation mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of environmental sciences
Journal of environmental sciences Environmental Science (General)
CiteScore
12.80
自引率
0.00%
发文量
0
审稿时长
17 days
期刊介绍: Journal of Environmental Sciences is an international peer-reviewed journal established in 1989. It is sponsored by the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, and it is jointly published by Elsevier and Science Press. It aims to foster interdisciplinary communication and promote understanding of significant environmental issues. The journal seeks to publish significant and novel research on the fate and behaviour of emerging contaminants, human impact on the environment, human exposure to environmental contaminants and their health effects, and environmental remediation and management. Original research articles, critical reviews, highlights, and perspectives of high quality are published both in print and online.
期刊最新文献
Editorial Board Core-shell design of UiO66-Fe3O4 configured with EDTA-assisted washing for rapid adsorption and simple recovery of heavy metal pollutants from soil Exposure to methylparaben at environmentally realistic concentrations significantly impairs neuronal health in adult zebrafish Diamine-modified porous indium frameworks with crystalline porous materials (CPM)-5 structure for carbon dioxide fixation under co-catalyst and solvent free conditions Estimation of surface ozone concentration over Jiangsu province using a high-performance deep learning model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1