{"title":"利用遗传算法解决光网络多故障定位问题","authors":"Masoud Vejdannik, Ali Sadr","doi":"10.1016/j.osn.2022.100706","DOIUrl":null,"url":null,"abstract":"<div><p><span>Fault management has long been an indispensable component for controlling and managing telecommunication networks<span>. To prevent huge data losses, it is necessary to develop a fast and efficient fault localization<span> mechanism. In this work, we study the problem of multi-failure localization in transparent optical networks<span>. In this context, a correlation-based approach is introduced to exploit the quality of transmission of acquired lightpaths to localize the faulty links. The proposed search-based framework can be implemented by leveraging any search algorithm. One may utilize the </span></span></span></span>exhaustive search<span><span> method to localize faulty links more accurately, but at the cost of taking more time. On the other hand, one may utilize intelligent search methods with the aim of reducing the required time for localization at the expense of accuracy. However, we propose to use both of the search approaches together. In this way, faulty links are first localized by the intelligent search methods to reroute and restore the failed traffic as fast as possible to prevent further loss of data. To this aim, a genetic algorithm (GA) is proposed to search among the suspected links. Subsequently, exhaustive search method can be utilized to localize failures more accurately without time constraint and then send technicians to the right site to recover the faulty links. The obtained results reveal that the proposed GA approach achieves overall high </span>localization accuracy (98.6%–100%) that is insignificantly affected as the traffic load decreases. Dual and triple-failure incidents are localized within 42–80 ms and 596–2180 ms, respectively. It is shown that the mean time required for localizing failures using the GA search algorithm is significantly lower than exhaustive search approach by several orders of magnitude. Hence, the proposed GA-based fault localization algorithm can reduce the average time required to restore the traffic in case of failures, applicable for the restoration applications.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"47 ","pages":"Article 100706"},"PeriodicalIF":1.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging genetic algorithm to address multi-failure localization in optical networks\",\"authors\":\"Masoud Vejdannik, Ali Sadr\",\"doi\":\"10.1016/j.osn.2022.100706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Fault management has long been an indispensable component for controlling and managing telecommunication networks<span>. To prevent huge data losses, it is necessary to develop a fast and efficient fault localization<span> mechanism. In this work, we study the problem of multi-failure localization in transparent optical networks<span>. In this context, a correlation-based approach is introduced to exploit the quality of transmission of acquired lightpaths to localize the faulty links. The proposed search-based framework can be implemented by leveraging any search algorithm. One may utilize the </span></span></span></span>exhaustive search<span><span> method to localize faulty links more accurately, but at the cost of taking more time. On the other hand, one may utilize intelligent search methods with the aim of reducing the required time for localization at the expense of accuracy. However, we propose to use both of the search approaches together. In this way, faulty links are first localized by the intelligent search methods to reroute and restore the failed traffic as fast as possible to prevent further loss of data. To this aim, a genetic algorithm (GA) is proposed to search among the suspected links. Subsequently, exhaustive search method can be utilized to localize failures more accurately without time constraint and then send technicians to the right site to recover the faulty links. The obtained results reveal that the proposed GA approach achieves overall high </span>localization accuracy (98.6%–100%) that is insignificantly affected as the traffic load decreases. Dual and triple-failure incidents are localized within 42–80 ms and 596–2180 ms, respectively. It is shown that the mean time required for localizing failures using the GA search algorithm is significantly lower than exhaustive search approach by several orders of magnitude. Hence, the proposed GA-based fault localization algorithm can reduce the average time required to restore the traffic in case of failures, applicable for the restoration applications.</span></p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"47 \",\"pages\":\"Article 100706\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157342772200042X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157342772200042X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Leveraging genetic algorithm to address multi-failure localization in optical networks
Fault management has long been an indispensable component for controlling and managing telecommunication networks. To prevent huge data losses, it is necessary to develop a fast and efficient fault localization mechanism. In this work, we study the problem of multi-failure localization in transparent optical networks. In this context, a correlation-based approach is introduced to exploit the quality of transmission of acquired lightpaths to localize the faulty links. The proposed search-based framework can be implemented by leveraging any search algorithm. One may utilize the exhaustive search method to localize faulty links more accurately, but at the cost of taking more time. On the other hand, one may utilize intelligent search methods with the aim of reducing the required time for localization at the expense of accuracy. However, we propose to use both of the search approaches together. In this way, faulty links are first localized by the intelligent search methods to reroute and restore the failed traffic as fast as possible to prevent further loss of data. To this aim, a genetic algorithm (GA) is proposed to search among the suspected links. Subsequently, exhaustive search method can be utilized to localize failures more accurately without time constraint and then send technicians to the right site to recover the faulty links. The obtained results reveal that the proposed GA approach achieves overall high localization accuracy (98.6%–100%) that is insignificantly affected as the traffic load decreases. Dual and triple-failure incidents are localized within 42–80 ms and 596–2180 ms, respectively. It is shown that the mean time required for localizing failures using the GA search algorithm is significantly lower than exhaustive search approach by several orders of magnitude. Hence, the proposed GA-based fault localization algorithm can reduce the average time required to restore the traffic in case of failures, applicable for the restoration applications.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks