XuWei Sun , Sen Li , XiaoHui Zhai , XiaoXu Wei , ChangZhen Yan
{"title":"青海三江源地区土地覆盖揭示的生态系统变化(1990-2015)","authors":"XuWei Sun , Sen Li , XiaoHui Zhai , XiaoXu Wei , ChangZhen Yan","doi":"10.1016/j.rcar.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>The Three-River Headwaters Region (TRHR) of Qinghai Province, in the Tibetan Plateau of China, is the main source of the Yangtze, Yellow, and Lancang rivers, and is very significant to the security of freshwater resources for China and southeastern Asia. It is a critical ecological region of China for its ecological functions, and has been changed or even degraded in recent decades owing to climate change and human pressure. To effectively protect and restore the degraded ecosystems, the Chinese government initiated a series of ecological conservation projects in TRHR. It is essential to quantitatively assess ecosystem changes and their relationship to driving factors for in-depth understanding of long-term changes of ecosystems and effects of ecological restoration policies and offer practical insights for ecological restoration. Here, land cover data has been interpreted with the series data of Landsat during 1990–2015. The patterns of different ecosystems and their developing process have been derived from land cover change. The results show that ecosystem types in TRHR include forest, grassland, cropland, wetland, artificial surface and barren land, accounting for 4.51%, 70.80%, 0.15%, 9.47%, 0.16% and 14.90%, respectively. Barren land converted to wetland was the significant ecosystem change from 1990 to 2015. Increases in temperature and precipitation and implementation of ecological rehabilitation helped maintain relatively stable ecosystem patterns. It is necessary to continue ecological projects to improve and/or maintain the ecosystems in TRHR because there is still a risk of land degradation under increasing climate change and human activity.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ecosystem changes revealed by land cover in the three-river headwaters region of Qinghai, China (1990–2015)\",\"authors\":\"XuWei Sun , Sen Li , XiaoHui Zhai , XiaoXu Wei , ChangZhen Yan\",\"doi\":\"10.1016/j.rcar.2023.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Three-River Headwaters Region (TRHR) of Qinghai Province, in the Tibetan Plateau of China, is the main source of the Yangtze, Yellow, and Lancang rivers, and is very significant to the security of freshwater resources for China and southeastern Asia. It is a critical ecological region of China for its ecological functions, and has been changed or even degraded in recent decades owing to climate change and human pressure. To effectively protect and restore the degraded ecosystems, the Chinese government initiated a series of ecological conservation projects in TRHR. It is essential to quantitatively assess ecosystem changes and their relationship to driving factors for in-depth understanding of long-term changes of ecosystems and effects of ecological restoration policies and offer practical insights for ecological restoration. Here, land cover data has been interpreted with the series data of Landsat during 1990–2015. The patterns of different ecosystems and their developing process have been derived from land cover change. The results show that ecosystem types in TRHR include forest, grassland, cropland, wetland, artificial surface and barren land, accounting for 4.51%, 70.80%, 0.15%, 9.47%, 0.16% and 14.90%, respectively. Barren land converted to wetland was the significant ecosystem change from 1990 to 2015. Increases in temperature and precipitation and implementation of ecological rehabilitation helped maintain relatively stable ecosystem patterns. It is necessary to continue ecological projects to improve and/or maintain the ecosystems in TRHR because there is still a risk of land degradation under increasing climate change and human activity.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2097158323000332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2097158323000332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ecosystem changes revealed by land cover in the three-river headwaters region of Qinghai, China (1990–2015)
The Three-River Headwaters Region (TRHR) of Qinghai Province, in the Tibetan Plateau of China, is the main source of the Yangtze, Yellow, and Lancang rivers, and is very significant to the security of freshwater resources for China and southeastern Asia. It is a critical ecological region of China for its ecological functions, and has been changed or even degraded in recent decades owing to climate change and human pressure. To effectively protect and restore the degraded ecosystems, the Chinese government initiated a series of ecological conservation projects in TRHR. It is essential to quantitatively assess ecosystem changes and their relationship to driving factors for in-depth understanding of long-term changes of ecosystems and effects of ecological restoration policies and offer practical insights for ecological restoration. Here, land cover data has been interpreted with the series data of Landsat during 1990–2015. The patterns of different ecosystems and their developing process have been derived from land cover change. The results show that ecosystem types in TRHR include forest, grassland, cropland, wetland, artificial surface and barren land, accounting for 4.51%, 70.80%, 0.15%, 9.47%, 0.16% and 14.90%, respectively. Barren land converted to wetland was the significant ecosystem change from 1990 to 2015. Increases in temperature and precipitation and implementation of ecological rehabilitation helped maintain relatively stable ecosystem patterns. It is necessary to continue ecological projects to improve and/or maintain the ecosystems in TRHR because there is still a risk of land degradation under increasing climate change and human activity.