Marko E. Popović , Marijana Pantović Pavlović , Marta Popović
{"title":"Eris-墙上的另一块砖:奥密克戎EG.5的经验公式、摩尔质量、生物合成反应、焓、熵和吉布斯能严重急性呼吸系统综合征冠状病毒2型的Eris和EG.5.1变体","authors":"Marko E. Popović , Marijana Pantović Pavlović , Marta Popović","doi":"10.1016/j.mran.2023.100280","DOIUrl":null,"url":null,"abstract":"<div><p>Since 2019, when it appeared in Wuhan, in the wild type form later labeled Hu-1, SARS-CoV-2 mutated dozens of times and evolved towards increase in infectivity and decrease or maintenance of constant pathogenicity through dozens of variants. The last of them are Omicron EG.5 and EG.5.1. Until 2019, an empirical formula was known only for the poliovirus. Until now empirical formulas and thermodynamic properties were reported for all variants of SARS-CoV-2 and some other viruses. Also, models were developed that describe the biothermodynamic background of SARS-CoV-2 interaction with its human host. With every new mutation in SARS-CoV-2, the question is raised about the further evolution of the virus. This paper reports for the first time empirical formulas and molar masses of Omicron EG.5 and EG.5.1 variants, as well as thermodynamic properties (enthalpy, entropy and Gibbs energy) of formation and biosynthesis. Moreover, the driving force of virus multiplication was analyzed, as well as multiplication rate and pathogenicity of Omicron EG.5 and EG.5.1.</p></div>","PeriodicalId":48593,"journal":{"name":"Microbial Risk Analysis","volume":"25 ","pages":"Article 100280"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eris - another brick in the wall: Empirical formulas, molar masses, biosynthesis reactions, enthalpy, entropy and Gibbs energy of Omicron EG.5 Eris and EG.5.1 variants of SARS-CoV-2\",\"authors\":\"Marko E. Popović , Marijana Pantović Pavlović , Marta Popović\",\"doi\":\"10.1016/j.mran.2023.100280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since 2019, when it appeared in Wuhan, in the wild type form later labeled Hu-1, SARS-CoV-2 mutated dozens of times and evolved towards increase in infectivity and decrease or maintenance of constant pathogenicity through dozens of variants. The last of them are Omicron EG.5 and EG.5.1. Until 2019, an empirical formula was known only for the poliovirus. Until now empirical formulas and thermodynamic properties were reported for all variants of SARS-CoV-2 and some other viruses. Also, models were developed that describe the biothermodynamic background of SARS-CoV-2 interaction with its human host. With every new mutation in SARS-CoV-2, the question is raised about the further evolution of the virus. This paper reports for the first time empirical formulas and molar masses of Omicron EG.5 and EG.5.1 variants, as well as thermodynamic properties (enthalpy, entropy and Gibbs energy) of formation and biosynthesis. Moreover, the driving force of virus multiplication was analyzed, as well as multiplication rate and pathogenicity of Omicron EG.5 and EG.5.1.</p></div>\",\"PeriodicalId\":48593,\"journal\":{\"name\":\"Microbial Risk Analysis\",\"volume\":\"25 \",\"pages\":\"Article 100280\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Risk Analysis\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235235222300035X\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Risk Analysis","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235235222300035X","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Eris - another brick in the wall: Empirical formulas, molar masses, biosynthesis reactions, enthalpy, entropy and Gibbs energy of Omicron EG.5 Eris and EG.5.1 variants of SARS-CoV-2
Since 2019, when it appeared in Wuhan, in the wild type form later labeled Hu-1, SARS-CoV-2 mutated dozens of times and evolved towards increase in infectivity and decrease or maintenance of constant pathogenicity through dozens of variants. The last of them are Omicron EG.5 and EG.5.1. Until 2019, an empirical formula was known only for the poliovirus. Until now empirical formulas and thermodynamic properties were reported for all variants of SARS-CoV-2 and some other viruses. Also, models were developed that describe the biothermodynamic background of SARS-CoV-2 interaction with its human host. With every new mutation in SARS-CoV-2, the question is raised about the further evolution of the virus. This paper reports for the first time empirical formulas and molar masses of Omicron EG.5 and EG.5.1 variants, as well as thermodynamic properties (enthalpy, entropy and Gibbs energy) of formation and biosynthesis. Moreover, the driving force of virus multiplication was analyzed, as well as multiplication rate and pathogenicity of Omicron EG.5 and EG.5.1.
期刊介绍:
The journal Microbial Risk Analysis accepts articles dealing with the study of risk analysis applied to microbial hazards. Manuscripts should at least cover any of the components of risk assessment (risk characterization, exposure assessment, etc.), risk management and/or risk communication in any microbiology field (clinical, environmental, food, veterinary, etc.). This journal also accepts article dealing with predictive microbiology, quantitative microbial ecology, mathematical modeling, risk studies applied to microbial ecology, quantitative microbiology for epidemiological studies, statistical methods applied to microbiology, and laws and regulatory policies aimed at lessening the risk of microbial hazards. Work focusing on risk studies of viruses, parasites, microbial toxins, antimicrobial resistant organisms, genetically modified organisms (GMOs), and recombinant DNA products are also acceptable.