基于拥塞感知的交叉口异构互联自动化车辆协同调度问题

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2023-01-02 DOI:10.1080/15472450.2021.1990053
Farzana R. Chowdhury , Peirong (Slade) Wang , Pengfei (Taylor) Li
{"title":"基于拥塞感知的交叉口异构互联自动化车辆协同调度问题","authors":"Farzana R. Chowdhury ,&nbsp;Peirong (Slade) Wang ,&nbsp;Pengfei (Taylor) Li","doi":"10.1080/15472450.2021.1990053","DOIUrl":null,"url":null,"abstract":"<div><p>More and more vehicles are connected today via emerging connected and automated vehicle (CAV) technologies. An intriguing application of CAVs is to cross intersections without stops through cooperative scheduling by traffic control infrastructure. Nonetheless, with the increase of CAVs’ requests for green, two problems will surface: (I) accommodating too many CAVs’ green requests will generate severe interruptions to general traffic; (II) simple scheduling policies like first-come-first serve is inappropriate due to heterogeneous importance of CAVs. To overcome these challenges, we present a mixed-integer linear programming (MILP) formulation for congestion-aware heterogeneous CAV scheduling problems at intersections in this paper. The objective is to ensure that intensive and heterogeneous green requests by CAVs can be scheduled at intersections while the mobility of background traffic is still maintained. The MILP formulation is developed in the context of discrete space-time and phase-time networks whose variables are space-time arc choice variables with respect to individual vehicles and phase-time arc choice variables. We also build an efficient search algorithm based on the “A-D curves” for real-time applications. Three experiments are conducted to validate the proposed MILP formulation and search algorithm. The simulation-based performance evaluation for the congestion-aware CAV scheduling reveal promising results for real-world applications in the future.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"27 1","pages":"Pages 111-126"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Congestion-aware heterogeneous connected automated vehicles cooperative scheduling problems at intersections\",\"authors\":\"Farzana R. Chowdhury ,&nbsp;Peirong (Slade) Wang ,&nbsp;Pengfei (Taylor) Li\",\"doi\":\"10.1080/15472450.2021.1990053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>More and more vehicles are connected today via emerging connected and automated vehicle (CAV) technologies. An intriguing application of CAVs is to cross intersections without stops through cooperative scheduling by traffic control infrastructure. Nonetheless, with the increase of CAVs’ requests for green, two problems will surface: (I) accommodating too many CAVs’ green requests will generate severe interruptions to general traffic; (II) simple scheduling policies like first-come-first serve is inappropriate due to heterogeneous importance of CAVs. To overcome these challenges, we present a mixed-integer linear programming (MILP) formulation for congestion-aware heterogeneous CAV scheduling problems at intersections in this paper. The objective is to ensure that intensive and heterogeneous green requests by CAVs can be scheduled at intersections while the mobility of background traffic is still maintained. The MILP formulation is developed in the context of discrete space-time and phase-time networks whose variables are space-time arc choice variables with respect to individual vehicles and phase-time arc choice variables. We also build an efficient search algorithm based on the “A-D curves” for real-time applications. Three experiments are conducted to validate the proposed MILP formulation and search algorithm. The simulation-based performance evaluation for the congestion-aware CAV scheduling reveal promising results for real-world applications in the future.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"27 1\",\"pages\":\"Pages 111-126\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245022003930\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245022003930","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 3

摘要

如今,越来越多的车辆通过新兴的联网和自动化车辆(CAV)技术进行连接。CAV的一个有趣的应用是通过交通控制基础设施的协同调度,在不停车的情况下穿过交叉口。尽管如此,随着CAV对绿色的要求增加,两个问题将浮出水面:(I)容纳太多CAV的绿色请求将对一般交通造成严重干扰;(II) 由于CAV的异构重要性,像先到先得这样的简单调度策略是不合适的。为了克服这些挑战,本文提出了一种混合整数线性规划(MILP)公式,用于交叉口感知拥塞的异构CAV调度问题。目标是确保CAV的密集和异构绿色请求可以在交叉口调度,同时背景交通的流动性仍然保持。MILP公式是在离散时空和相时网络的背景下开发的,其变量是相对于单个车辆的时空弧选择变量和相时弧选择变量。我们还构建了一个基于“A-D曲线”的高效搜索算法,用于实时应用。进行了三个实验来验证所提出的MILP公式和搜索算法。基于仿真的拥塞感知CAV调度性能评估为未来的实际应用提供了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Congestion-aware heterogeneous connected automated vehicles cooperative scheduling problems at intersections

More and more vehicles are connected today via emerging connected and automated vehicle (CAV) technologies. An intriguing application of CAVs is to cross intersections without stops through cooperative scheduling by traffic control infrastructure. Nonetheless, with the increase of CAVs’ requests for green, two problems will surface: (I) accommodating too many CAVs’ green requests will generate severe interruptions to general traffic; (II) simple scheduling policies like first-come-first serve is inappropriate due to heterogeneous importance of CAVs. To overcome these challenges, we present a mixed-integer linear programming (MILP) formulation for congestion-aware heterogeneous CAV scheduling problems at intersections in this paper. The objective is to ensure that intensive and heterogeneous green requests by CAVs can be scheduled at intersections while the mobility of background traffic is still maintained. The MILP formulation is developed in the context of discrete space-time and phase-time networks whose variables are space-time arc choice variables with respect to individual vehicles and phase-time arc choice variables. We also build an efficient search algorithm based on the “A-D curves” for real-time applications. Three experiments are conducted to validate the proposed MILP formulation and search algorithm. The simulation-based performance evaluation for the congestion-aware CAV scheduling reveal promising results for real-world applications in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Adaptive graph convolutional network-based short-term passenger flow prediction for metro Adaptive green split optimization for traffic control with low penetration rate trajectory data Inferring the number of vehicles between trajectory-observed vehicles Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors Evaluating the impacts of vehicle-mounted Variable Message Signs on passing vehicles: implications for protecting roadside incident and service personnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1