Gyanasmita Pradhan, Ramakrushna Reddy, Paresh Nath Singha Roy
{"title":"基于海洋大气动力学的印度洋微震噪声源特征","authors":"Gyanasmita Pradhan, Ramakrushna Reddy, Paresh Nath Singha Roy","doi":"10.1016/j.geogeo.2023.100220","DOIUrl":null,"url":null,"abstract":"<div><p>Microseism noise, which occurs in the period range of 2–20 s, is the most energetic band in the earth's background spectra. In the present study, we examined the amplitude spectra and directional characteristics of microseism in the Indian Ocean. We use the data from ten openly accessible land stations located all around the Indian Ocean. The probability power spectral density was used to characterize the microseism. To characterize the microseism, we employ the frequency dependent polarization approach, which is governed by the Eigen value decomposition of the 3 × 3 spectral covariance matrix. The spatial and temporal variation of microseism was investigated in order to better understand its distribution in the Indian Ocean region, which is regarded as a global source of microseism. For some stations, we observe the splitting of double frequency microseism into short period (2–5 s) and long period (6–10 s) microseism. The polarization analysis reveals the dominant sources of the microseism are located in the Southern Ocean. We also correlated the spatio-temporal variation of significant wave heights (swh) with the power spectral densities at each station. We observe a remarkable correlation between power spectral density with the significant wave height (swh) in both spatially and temporally in secondary microseism band. We also characterize the dominant surface wave types in the microseism band. In long period band Rayleigh waves are dominant and Love waves are prominent in the short period band.</p></div>","PeriodicalId":100582,"journal":{"name":"Geosystems and Geoenvironment","volume":"3 1","pages":"Article 100220"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of microseism noise sources in Indian Ocean due to ocean atmospheric dynamics\",\"authors\":\"Gyanasmita Pradhan, Ramakrushna Reddy, Paresh Nath Singha Roy\",\"doi\":\"10.1016/j.geogeo.2023.100220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microseism noise, which occurs in the period range of 2–20 s, is the most energetic band in the earth's background spectra. In the present study, we examined the amplitude spectra and directional characteristics of microseism in the Indian Ocean. We use the data from ten openly accessible land stations located all around the Indian Ocean. The probability power spectral density was used to characterize the microseism. To characterize the microseism, we employ the frequency dependent polarization approach, which is governed by the Eigen value decomposition of the 3 × 3 spectral covariance matrix. The spatial and temporal variation of microseism was investigated in order to better understand its distribution in the Indian Ocean region, which is regarded as a global source of microseism. For some stations, we observe the splitting of double frequency microseism into short period (2–5 s) and long period (6–10 s) microseism. The polarization analysis reveals the dominant sources of the microseism are located in the Southern Ocean. We also correlated the spatio-temporal variation of significant wave heights (swh) with the power spectral densities at each station. We observe a remarkable correlation between power spectral density with the significant wave height (swh) in both spatially and temporally in secondary microseism band. We also characterize the dominant surface wave types in the microseism band. In long period band Rayleigh waves are dominant and Love waves are prominent in the short period band.</p></div>\",\"PeriodicalId\":100582,\"journal\":{\"name\":\"Geosystems and Geoenvironment\",\"volume\":\"3 1\",\"pages\":\"Article 100220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosystems and Geoenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772883823000432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystems and Geoenvironment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772883823000432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of microseism noise sources in Indian Ocean due to ocean atmospheric dynamics
Microseism noise, which occurs in the period range of 2–20 s, is the most energetic band in the earth's background spectra. In the present study, we examined the amplitude spectra and directional characteristics of microseism in the Indian Ocean. We use the data from ten openly accessible land stations located all around the Indian Ocean. The probability power spectral density was used to characterize the microseism. To characterize the microseism, we employ the frequency dependent polarization approach, which is governed by the Eigen value decomposition of the 3 × 3 spectral covariance matrix. The spatial and temporal variation of microseism was investigated in order to better understand its distribution in the Indian Ocean region, which is regarded as a global source of microseism. For some stations, we observe the splitting of double frequency microseism into short period (2–5 s) and long period (6–10 s) microseism. The polarization analysis reveals the dominant sources of the microseism are located in the Southern Ocean. We also correlated the spatio-temporal variation of significant wave heights (swh) with the power spectral densities at each station. We observe a remarkable correlation between power spectral density with the significant wave height (swh) in both spatially and temporally in secondary microseism band. We also characterize the dominant surface wave types in the microseism band. In long period band Rayleigh waves are dominant and Love waves are prominent in the short period band.