{"title":"利用多源地理空间大数据识别美国城市中心的一种基于拓扑结构的方法","authors":"Zheng Ren , Stefan Seipel , Bin Jiang","doi":"10.1016/j.compenvurbsys.2023.102045","DOIUrl":null,"url":null,"abstract":"<div><p>Urban structure can be better comprehended through analyzing its cores. Geospatial big data facilitate the identification of urban centers in terms of high accuracy and accessibility. However, previous studies seldom leverage multi-source geospatial big data to identify urban centers from a topological perspective. This study attempts to identify urban centers through the spatial integration of multi-source geospatial big data, including nighttime light imagery (NTL), building footprints (BFP) and street nodes of OpenStreetMap (OSM). We use a novel topological approach to construct complex networks from intra-urban hotspots based on the theory of centers by Christopher Alexander. We compute the degree of wholeness value for each hotspot as the centric index. The overlapped hotspots with the highest centric indices are regarded as urban centers. The identified urban centers in New York, Los Angeles, and Houston are consistent with their downtown areas, with overall accuracy of 90.23%. In Chicago, a new urban center is identified considering a larger spatial extent. The proposed approach can effectively and objectively prevent counting those hotspots with high intensity values but few neighbors into the result. This study proposes a topological approach for urban center identification and a bottom-up perspective for sustainable urban design.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"107 ","pages":"Article 102045"},"PeriodicalIF":7.1000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A topology-based approach to identifying urban centers in America using multi-source geospatial big data\",\"authors\":\"Zheng Ren , Stefan Seipel , Bin Jiang\",\"doi\":\"10.1016/j.compenvurbsys.2023.102045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban structure can be better comprehended through analyzing its cores. Geospatial big data facilitate the identification of urban centers in terms of high accuracy and accessibility. However, previous studies seldom leverage multi-source geospatial big data to identify urban centers from a topological perspective. This study attempts to identify urban centers through the spatial integration of multi-source geospatial big data, including nighttime light imagery (NTL), building footprints (BFP) and street nodes of OpenStreetMap (OSM). We use a novel topological approach to construct complex networks from intra-urban hotspots based on the theory of centers by Christopher Alexander. We compute the degree of wholeness value for each hotspot as the centric index. The overlapped hotspots with the highest centric indices are regarded as urban centers. The identified urban centers in New York, Los Angeles, and Houston are consistent with their downtown areas, with overall accuracy of 90.23%. In Chicago, a new urban center is identified considering a larger spatial extent. The proposed approach can effectively and objectively prevent counting those hotspots with high intensity values but few neighbors into the result. This study proposes a topological approach for urban center identification and a bottom-up perspective for sustainable urban design.</p></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"107 \",\"pages\":\"Article 102045\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971523001084\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971523001084","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
A topology-based approach to identifying urban centers in America using multi-source geospatial big data
Urban structure can be better comprehended through analyzing its cores. Geospatial big data facilitate the identification of urban centers in terms of high accuracy and accessibility. However, previous studies seldom leverage multi-source geospatial big data to identify urban centers from a topological perspective. This study attempts to identify urban centers through the spatial integration of multi-source geospatial big data, including nighttime light imagery (NTL), building footprints (BFP) and street nodes of OpenStreetMap (OSM). We use a novel topological approach to construct complex networks from intra-urban hotspots based on the theory of centers by Christopher Alexander. We compute the degree of wholeness value for each hotspot as the centric index. The overlapped hotspots with the highest centric indices are regarded as urban centers. The identified urban centers in New York, Los Angeles, and Houston are consistent with their downtown areas, with overall accuracy of 90.23%. In Chicago, a new urban center is identified considering a larger spatial extent. The proposed approach can effectively and objectively prevent counting those hotspots with high intensity values but few neighbors into the result. This study proposes a topological approach for urban center identification and a bottom-up perspective for sustainable urban design.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.