Luisa Velasquez-Camacho , Maddi Etxegarai , Sergio de-Miguel
{"title":"利用高分辨率航空、卫星和地面图像实现城市树木检测和地理定位的深度学习算法","authors":"Luisa Velasquez-Camacho , Maddi Etxegarai , Sergio de-Miguel","doi":"10.1016/j.compenvurbsys.2023.102025","DOIUrl":null,"url":null,"abstract":"<div><p>Urban forests are becoming increasingly important for human well-being as they provide ecosystem services that contribute to improving well-being of city dwellers and to addressing climate change. However, despite their importance, there is an information gap in most of the world's urban forests due to the high cost and complexity of conducting standard forest inventories in urban environments. New technologies based on artificial intelligence can represent a smart and efficient alternative to costly traditional inventories. In this paper, we present an approach based on deep learning algorithms for the detection, counting, and geopositioning of trees using a combination of ground-level and aerial/satellite imagery. We tested several convolutional networks, exploring different combinations of hyperparameters and adjusting the query distance between ground-level images, detection radius, and various resolutions of satellite and aerial images. Our methodology is able to detect and accurately locate 79% of the urban street tree with a positional accuracy of 60 cm to the center of the canopy. Additionally, this approach allows us to determine the availability of photographs of urban trees, indicating from which Google Street View image each tree is visible. Our research provides a scalable and replicable solution to the scarcity of urban tree data and information worldwide, demonstrating the potential of artificial intelligence to revolutionize the way in which we inventory and monitor urban forests.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"105 ","pages":"Article 102025"},"PeriodicalIF":7.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing Deep Learning algorithms for urban tree detection and geolocation with high-resolution aerial, satellite, and ground-level images\",\"authors\":\"Luisa Velasquez-Camacho , Maddi Etxegarai , Sergio de-Miguel\",\"doi\":\"10.1016/j.compenvurbsys.2023.102025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban forests are becoming increasingly important for human well-being as they provide ecosystem services that contribute to improving well-being of city dwellers and to addressing climate change. However, despite their importance, there is an information gap in most of the world's urban forests due to the high cost and complexity of conducting standard forest inventories in urban environments. New technologies based on artificial intelligence can represent a smart and efficient alternative to costly traditional inventories. In this paper, we present an approach based on deep learning algorithms for the detection, counting, and geopositioning of trees using a combination of ground-level and aerial/satellite imagery. We tested several convolutional networks, exploring different combinations of hyperparameters and adjusting the query distance between ground-level images, detection radius, and various resolutions of satellite and aerial images. Our methodology is able to detect and accurately locate 79% of the urban street tree with a positional accuracy of 60 cm to the center of the canopy. Additionally, this approach allows us to determine the availability of photographs of urban trees, indicating from which Google Street View image each tree is visible. Our research provides a scalable and replicable solution to the scarcity of urban tree data and information worldwide, demonstrating the potential of artificial intelligence to revolutionize the way in which we inventory and monitor urban forests.</p></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"105 \",\"pages\":\"Article 102025\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971523000881\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971523000881","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Implementing Deep Learning algorithms for urban tree detection and geolocation with high-resolution aerial, satellite, and ground-level images
Urban forests are becoming increasingly important for human well-being as they provide ecosystem services that contribute to improving well-being of city dwellers and to addressing climate change. However, despite their importance, there is an information gap in most of the world's urban forests due to the high cost and complexity of conducting standard forest inventories in urban environments. New technologies based on artificial intelligence can represent a smart and efficient alternative to costly traditional inventories. In this paper, we present an approach based on deep learning algorithms for the detection, counting, and geopositioning of trees using a combination of ground-level and aerial/satellite imagery. We tested several convolutional networks, exploring different combinations of hyperparameters and adjusting the query distance between ground-level images, detection radius, and various resolutions of satellite and aerial images. Our methodology is able to detect and accurately locate 79% of the urban street tree with a positional accuracy of 60 cm to the center of the canopy. Additionally, this approach allows us to determine the availability of photographs of urban trees, indicating from which Google Street View image each tree is visible. Our research provides a scalable and replicable solution to the scarcity of urban tree data and information worldwide, demonstrating the potential of artificial intelligence to revolutionize the way in which we inventory and monitor urban forests.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.