Peng YANG , Shicheng ZHANG , Yushi ZOU , Jianmin LI , Xinfang MA , Gang TIAN , Junchao WANG
{"title":"多井场压裂处理的裂缝扩展、支撑剂运移及参数优化","authors":"Peng YANG , Shicheng ZHANG , Yushi ZOU , Jianmin LI , Xinfang MA , Gang TIAN , Junchao WANG","doi":"10.1016/S1876-3804(23)60461-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper establishes a 3D multi-well pad fracturing numerical model coupled with fracture propagation and proppant migration based on the displacement discontinuity method and Eulerian-Eulerian frameworks, and the fracture propagation and proppant distribution during multi-well fracturing are investigated by taking the actual multi-well pad parameters as an example. Fracture initiation and propagation during multi-well pad fracturing are jointly affected by a variety of stress interference mechanisms such as inter-cluster, inter-stage, and inter-well, and the fracture extension is unbalanced among clusters, asymmetric on both wings, and dipping at heels. Due to the significant influence of fracture morphology and width on the migration capacity of proppant in the fracture, proppant is mainly placed in the area near the wellbore with large fracture width, while a high-concentration sandwash may easily occur in the area with narrow fracture width as a result of quick bridging. On the whole, the proppant placement range is limited. Increasing the well-spacing can reduce the stress interference of adjacent wells and promote the uniform distribution of fractures and proppant on both wings. The maximum stimulated reservoir volume or multi-fracture uniform propagation can be achieved by optimizing the well spacing. Although reducing the perforation-cluster spacing also can improve the stimulated reservoir area, a too low cluster spacing is not conducive to effectively increasing the propped fracture area. Since increasing the stage time lag is beneficial to reduce inter-stage stress interference, zipper fracturing produces more uniform fracture propagation and proppant distribution.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"50 5","pages":"Pages 1225-1235"},"PeriodicalIF":7.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture propagation, proppant transport and parameter optimization of multi-well pad fracturing treatment\",\"authors\":\"Peng YANG , Shicheng ZHANG , Yushi ZOU , Jianmin LI , Xinfang MA , Gang TIAN , Junchao WANG\",\"doi\":\"10.1016/S1876-3804(23)60461-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper establishes a 3D multi-well pad fracturing numerical model coupled with fracture propagation and proppant migration based on the displacement discontinuity method and Eulerian-Eulerian frameworks, and the fracture propagation and proppant distribution during multi-well fracturing are investigated by taking the actual multi-well pad parameters as an example. Fracture initiation and propagation during multi-well pad fracturing are jointly affected by a variety of stress interference mechanisms such as inter-cluster, inter-stage, and inter-well, and the fracture extension is unbalanced among clusters, asymmetric on both wings, and dipping at heels. Due to the significant influence of fracture morphology and width on the migration capacity of proppant in the fracture, proppant is mainly placed in the area near the wellbore with large fracture width, while a high-concentration sandwash may easily occur in the area with narrow fracture width as a result of quick bridging. On the whole, the proppant placement range is limited. Increasing the well-spacing can reduce the stress interference of adjacent wells and promote the uniform distribution of fractures and proppant on both wings. The maximum stimulated reservoir volume or multi-fracture uniform propagation can be achieved by optimizing the well spacing. Although reducing the perforation-cluster spacing also can improve the stimulated reservoir area, a too low cluster spacing is not conducive to effectively increasing the propped fracture area. Since increasing the stage time lag is beneficial to reduce inter-stage stress interference, zipper fracturing produces more uniform fracture propagation and proppant distribution.</p></div>\",\"PeriodicalId\":67426,\"journal\":{\"name\":\"Petroleum Exploration and Development\",\"volume\":\"50 5\",\"pages\":\"Pages 1225-1235\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Exploration and Development\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876380423604616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380423604616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Fracture propagation, proppant transport and parameter optimization of multi-well pad fracturing treatment
This paper establishes a 3D multi-well pad fracturing numerical model coupled with fracture propagation and proppant migration based on the displacement discontinuity method and Eulerian-Eulerian frameworks, and the fracture propagation and proppant distribution during multi-well fracturing are investigated by taking the actual multi-well pad parameters as an example. Fracture initiation and propagation during multi-well pad fracturing are jointly affected by a variety of stress interference mechanisms such as inter-cluster, inter-stage, and inter-well, and the fracture extension is unbalanced among clusters, asymmetric on both wings, and dipping at heels. Due to the significant influence of fracture morphology and width on the migration capacity of proppant in the fracture, proppant is mainly placed in the area near the wellbore with large fracture width, while a high-concentration sandwash may easily occur in the area with narrow fracture width as a result of quick bridging. On the whole, the proppant placement range is limited. Increasing the well-spacing can reduce the stress interference of adjacent wells and promote the uniform distribution of fractures and proppant on both wings. The maximum stimulated reservoir volume or multi-fracture uniform propagation can be achieved by optimizing the well spacing. Although reducing the perforation-cluster spacing also can improve the stimulated reservoir area, a too low cluster spacing is not conducive to effectively increasing the propped fracture area. Since increasing the stage time lag is beneficial to reduce inter-stage stress interference, zipper fracturing produces more uniform fracture propagation and proppant distribution.