用于高光谱图像分类的多尺度交叉融合网络

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES Egyptian Journal of Remote Sensing and Space Sciences Pub Date : 2023-09-20 DOI:10.1016/j.ejrs.2023.09.002
Haizhu Pan , Yuexia Zhu , Haimiao Ge , Moqi Liu , Cuiping Shi
{"title":"用于高光谱图像分类的多尺度交叉融合网络","authors":"Haizhu Pan ,&nbsp;Yuexia Zhu ,&nbsp;Haimiao Ge ,&nbsp;Moqi Liu ,&nbsp;Cuiping Shi","doi":"10.1016/j.ejrs.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, hyperspectral image (HSI) classification methods based on deep-learning have attracted widespread attention. Convolutional neural networks, as a crucial deep-learning technique, have exhibited outstanding performance in HSI classification. However, there are still some challenges, such as limited labeled samples, and feature extraction of complex land cover objects. To address these challenges, in this paper, we propose a multiscale cross-fusion network for HSI classification. It consists of three components: a spectral signatures extraction network, a spatial features extraction network and a classification network, which are utilized to extract spectral signatures, extract spatial contextual information and generate classification results, respectively. Specifically, the cross-branch multiscale convolutional block and the channel global contextual attention are integrated to extract spectral signatures, and the cross-hierarchy multiscale convolutional blocks and the spatial global contextual attention are combined to extract spatial features. Furthermore, special fusion strategies are proposed in these blocks to promote the interaction between features and achieve better feature connectivity. A series of experiments are conducted on three public HCI datasets, and the results show that the overall accuracy of the proposed network is 0.57%, 0.61%, and 0.3% higher than that of the state-of-the-art method on the PU, SV, and HH datasets, respectively.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"26 3","pages":"Pages 839-850"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale cross-fusion network for hyperspectral image classification\",\"authors\":\"Haizhu Pan ,&nbsp;Yuexia Zhu ,&nbsp;Haimiao Ge ,&nbsp;Moqi Liu ,&nbsp;Cuiping Shi\",\"doi\":\"10.1016/j.ejrs.2023.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, hyperspectral image (HSI) classification methods based on deep-learning have attracted widespread attention. Convolutional neural networks, as a crucial deep-learning technique, have exhibited outstanding performance in HSI classification. However, there are still some challenges, such as limited labeled samples, and feature extraction of complex land cover objects. To address these challenges, in this paper, we propose a multiscale cross-fusion network for HSI classification. It consists of three components: a spectral signatures extraction network, a spatial features extraction network and a classification network, which are utilized to extract spectral signatures, extract spatial contextual information and generate classification results, respectively. Specifically, the cross-branch multiscale convolutional block and the channel global contextual attention are integrated to extract spectral signatures, and the cross-hierarchy multiscale convolutional blocks and the spatial global contextual attention are combined to extract spatial features. Furthermore, special fusion strategies are proposed in these blocks to promote the interaction between features and achieve better feature connectivity. A series of experiments are conducted on three public HCI datasets, and the results show that the overall accuracy of the proposed network is 0.57%, 0.61%, and 0.3% higher than that of the state-of-the-art method on the PU, SV, and HH datasets, respectively.</p></div>\",\"PeriodicalId\":48539,\"journal\":{\"name\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"volume\":\"26 3\",\"pages\":\"Pages 839-850\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982323000728\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982323000728","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于深度学习的高光谱图像分类方法引起了广泛关注。卷积神经网络作为一种关键的深度学习技术,在HSI分类中表现出了卓越的性能。然而,仍然存在一些挑战,例如有限的标记样本和复杂土地覆盖对象的特征提取。为了应对这些挑战,本文提出了一种用于HSI分类的多尺度交叉融合网络。它由三个部分组成:光谱特征提取网络、空间特征提取网络和分类网络,分别用于提取光谱特征、提取空间上下文信息和生成分类结果。具体而言,将跨分支多尺度卷积块和通道全局上下文注意力相结合来提取频谱特征,将跨层次多尺度卷积区块和空间全局上下文注意力结合来提取空间特征。此外,在这些块中提出了特殊的融合策略,以促进特征之间的交互,实现更好的特征连接。在三个公共HCI数据集上进行了一系列实验,结果表明,在PU、SV和HH数据集上,所提出的网络的总体准确率分别比现有方法高0.57%、0.61%和0.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale cross-fusion network for hyperspectral image classification

Recently, hyperspectral image (HSI) classification methods based on deep-learning have attracted widespread attention. Convolutional neural networks, as a crucial deep-learning technique, have exhibited outstanding performance in HSI classification. However, there are still some challenges, such as limited labeled samples, and feature extraction of complex land cover objects. To address these challenges, in this paper, we propose a multiscale cross-fusion network for HSI classification. It consists of three components: a spectral signatures extraction network, a spatial features extraction network and a classification network, which are utilized to extract spectral signatures, extract spatial contextual information and generate classification results, respectively. Specifically, the cross-branch multiscale convolutional block and the channel global contextual attention are integrated to extract spectral signatures, and the cross-hierarchy multiscale convolutional blocks and the spatial global contextual attention are combined to extract spatial features. Furthermore, special fusion strategies are proposed in these blocks to promote the interaction between features and achieve better feature connectivity. A series of experiments are conducted on three public HCI datasets, and the results show that the overall accuracy of the proposed network is 0.57%, 0.61%, and 0.3% higher than that of the state-of-the-art method on the PU, SV, and HH datasets, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
期刊最新文献
Editorial Board Spectral–Spatial Adaptive Weighted Fusion and Residual Dense Network for hyperspectral image classification New radio-seismic indicator for ELF seismic precursors detectability Estimation of above ground biomass of mangrove forest plot using terrestrial laser scanner Efficient bundle optimization for accurate camera pose estimation in mobile augmented reality systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1