Adam Keen, Feiran Zhang, John S Reader, Ellie Tzima
{"title":"机械应力下血管内皮的蛋白酶抑制和弹性","authors":"Adam Keen, Feiran Zhang, John S Reader, Ellie Tzima","doi":"10.1016/j.cophys.2023.100673","DOIUrl":null,"url":null,"abstract":"<div><p>Endothelial homeostasis is a central feature of vascular health. The vascular endothelium is under constant mechanical stress resulting from blood flow and, therefore, requires a high degree of resilience to adapt to stresses and resist development of disease. In this review, we discuss the molecular mechanisms by which the endothelium maintains proteostasis in response to haemodynamic forces by regulating three key areas: protein synthesis, recycling and degradation.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"34 ","pages":"Article 100673"},"PeriodicalIF":2.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Proteostasis and resilience in the mechanically-stressed vascular endothelium\",\"authors\":\"Adam Keen, Feiran Zhang, John S Reader, Ellie Tzima\",\"doi\":\"10.1016/j.cophys.2023.100673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Endothelial homeostasis is a central feature of vascular health. The vascular endothelium is under constant mechanical stress resulting from blood flow and, therefore, requires a high degree of resilience to adapt to stresses and resist development of disease. In this review, we discuss the molecular mechanisms by which the endothelium maintains proteostasis in response to haemodynamic forces by regulating three key areas: protein synthesis, recycling and degradation.</p></div>\",\"PeriodicalId\":52156,\"journal\":{\"name\":\"Current Opinion in Physiology\",\"volume\":\"34 \",\"pages\":\"Article 100673\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468867323000433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468867323000433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Proteostasis and resilience in the mechanically-stressed vascular endothelium
Endothelial homeostasis is a central feature of vascular health. The vascular endothelium is under constant mechanical stress resulting from blood flow and, therefore, requires a high degree of resilience to adapt to stresses and resist development of disease. In this review, we discuss the molecular mechanisms by which the endothelium maintains proteostasis in response to haemodynamic forces by regulating three key areas: protein synthesis, recycling and degradation.