使用层析参数的无监督机器学习分析圆锥角膜进展分层

Ke Cao , Karin Verspoor , Elsie Chan , Mark Daniell , Srujana Sahebjada , Paul N. Baird
{"title":"使用层析参数的无监督机器学习分析圆锥角膜进展分层","authors":"Ke Cao ,&nbsp;Karin Verspoor ,&nbsp;Elsie Chan ,&nbsp;Mark Daniell ,&nbsp;Srujana Sahebjada ,&nbsp;Paul N. Baird","doi":"10.1016/j.ibmed.2023.100095","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>This study aimed to stratify eyes with keratoconus (KC) based on longitudinal changes in all Pentacam parameters into clusters using unsupervised machine learning, with the broader objective of more clearly defining the characteristics of KC progression.</p></div><div><h3>Methods</h3><p>A data-driven cluster analysis (hierarchical clustering) was undertaken on a retrospective cohort of 1017 kC eyes and 128 control eyes. Clusters were derived using 6-month tomographical change in individual eyes from analysis of the reduced dimensionality parameter space using all available Pentacam parameters (406 principal components). The optimal number of clusters was determined by the clustering's capacity to discriminate progression between KC and control eyes based on change across parameters. One-way ANOVA was used to compare parameters between inferred clusters. Complete Pentacam data changes at 6, 12 and 18-month time points provided validation datasets to determine the generalizability of the clustering model.</p></div><div><h3>Results</h3><p>We identified three clusters in KC progression patterns. Eyes designated within cluster 3 had the most rapidly changing tomographical parameters compared to eyes in either cluster 1 or 2. Eyes designated within cluster 1 reflected minimal changes in tomographical parameters, closest to the tomographical changes of control (non-KC) eyes. Thirty-nine corneal curvature parameters were identified and associated with these stratified clusters, with each of these parameters changing significantly different between three clusters. Similar clusters were identified at the 6, 12 and 18-month follow-up.</p></div><div><h3>Conclusions</h3><p>The clustering model developed was able to automatically detect and categorize KC tomographical features into fast, slow, or limited change at different time points. This new KC stratification tool may provide an opportunity to provide a precision medicine approach to KC.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"7 ","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stratification of keratoconus progression using unsupervised machine learning analysis of tomographical parameters\",\"authors\":\"Ke Cao ,&nbsp;Karin Verspoor ,&nbsp;Elsie Chan ,&nbsp;Mark Daniell ,&nbsp;Srujana Sahebjada ,&nbsp;Paul N. Baird\",\"doi\":\"10.1016/j.ibmed.2023.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>This study aimed to stratify eyes with keratoconus (KC) based on longitudinal changes in all Pentacam parameters into clusters using unsupervised machine learning, with the broader objective of more clearly defining the characteristics of KC progression.</p></div><div><h3>Methods</h3><p>A data-driven cluster analysis (hierarchical clustering) was undertaken on a retrospective cohort of 1017 kC eyes and 128 control eyes. Clusters were derived using 6-month tomographical change in individual eyes from analysis of the reduced dimensionality parameter space using all available Pentacam parameters (406 principal components). The optimal number of clusters was determined by the clustering's capacity to discriminate progression between KC and control eyes based on change across parameters. One-way ANOVA was used to compare parameters between inferred clusters. Complete Pentacam data changes at 6, 12 and 18-month time points provided validation datasets to determine the generalizability of the clustering model.</p></div><div><h3>Results</h3><p>We identified three clusters in KC progression patterns. Eyes designated within cluster 3 had the most rapidly changing tomographical parameters compared to eyes in either cluster 1 or 2. Eyes designated within cluster 1 reflected minimal changes in tomographical parameters, closest to the tomographical changes of control (non-KC) eyes. Thirty-nine corneal curvature parameters were identified and associated with these stratified clusters, with each of these parameters changing significantly different between three clusters. Similar clusters were identified at the 6, 12 and 18-month follow-up.</p></div><div><h3>Conclusions</h3><p>The clustering model developed was able to automatically detect and categorize KC tomographical features into fast, slow, or limited change at different time points. This new KC stratification tool may provide an opportunity to provide a precision medicine approach to KC.</p></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"7 \",\"pages\":\"Article 100095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521223000091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521223000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用无监督机器学习技术,基于所有Pentacam参数的纵向变化对圆锥角膜(KC)进行分层,目的是更清楚地定义KC进展的特征。方法对1017只kC眼和128只对照眼进行数据驱动聚类分析(分层聚类)。通过使用所有可用的Pentacam参数(406个主成分)分析降维参数空间,利用个体眼睛6个月的层析成像变化得出聚类。最优聚类数由聚类根据参数变化区分KC眼和对照眼进展的能力决定。采用单因素方差分析来比较推断聚类之间的参数。Pentacam在6、12和18个月时间点的完整数据变化提供了验证数据集,以确定聚类模型的可泛化性。结果我们确定了KC进展模式中的三个集群。与聚类1或聚类2中的眼睛相比,聚类3中的眼睛的层析成像参数变化最快。在聚类1中指定的眼睛反映的层析参数变化最小,最接近对照(非kc)眼睛的层析变化。鉴定了39个角膜曲率参数,并与这些分层簇相关联,每个参数在三个簇之间变化显著不同。在6个月、12个月和18个月的随访中发现了类似的群集。结论所建立的聚类模型能够自动检测并将不同时间点的KC层析特征分为快速、缓慢和有限变化。这种新的KC分层工具可能为KC提供精准医学方法提供机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stratification of keratoconus progression using unsupervised machine learning analysis of tomographical parameters

Purpose

This study aimed to stratify eyes with keratoconus (KC) based on longitudinal changes in all Pentacam parameters into clusters using unsupervised machine learning, with the broader objective of more clearly defining the characteristics of KC progression.

Methods

A data-driven cluster analysis (hierarchical clustering) was undertaken on a retrospective cohort of 1017 kC eyes and 128 control eyes. Clusters were derived using 6-month tomographical change in individual eyes from analysis of the reduced dimensionality parameter space using all available Pentacam parameters (406 principal components). The optimal number of clusters was determined by the clustering's capacity to discriminate progression between KC and control eyes based on change across parameters. One-way ANOVA was used to compare parameters between inferred clusters. Complete Pentacam data changes at 6, 12 and 18-month time points provided validation datasets to determine the generalizability of the clustering model.

Results

We identified three clusters in KC progression patterns. Eyes designated within cluster 3 had the most rapidly changing tomographical parameters compared to eyes in either cluster 1 or 2. Eyes designated within cluster 1 reflected minimal changes in tomographical parameters, closest to the tomographical changes of control (non-KC) eyes. Thirty-nine corneal curvature parameters were identified and associated with these stratified clusters, with each of these parameters changing significantly different between three clusters. Similar clusters were identified at the 6, 12 and 18-month follow-up.

Conclusions

The clustering model developed was able to automatically detect and categorize KC tomographical features into fast, slow, or limited change at different time points. This new KC stratification tool may provide an opportunity to provide a precision medicine approach to KC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1