M. Sanz-Calle , J. Munoa , A. Iglesias , L.N. López de Lacalle , Z. Dombovari
{"title":"间断铣削的频域半解析稳定性算法","authors":"M. Sanz-Calle , J. Munoa , A. Iglesias , L.N. López de Lacalle , Z. Dombovari","doi":"10.1016/j.ijmachtools.2023.104005","DOIUrl":null,"url":null,"abstract":"<div><p>The construction of stability diagrams of interrupted milling cases is generally carried out by means of time-consuming numerical methods in either frequency or time domain, since the period doubling lobes arising under interrupted cutting are omitted by the time-averaged parametric scan of the traditional zeroth order approximation. This paper presents a novel seminalytic method in the frequency domain for interrupted milling. Taking advantage of their analytical chatter frequency distribution, this method adds the period doubling lobes calculated in a single frequency scan to the existing Hopf limits of the zeroth order solution. This, together with intelligent selection of scanning frequency ranges and truncation to the minimum set of harmonics, allows very fast calculation of the stability charts of interrupted milling cases while retaining the analytical basis and advantages of the zeroth order algorithm. The method accurately describes the stability limits at period doubling dominated zones and improves the existing zeroth order solution, but exhibits slight inaccuracies in the prediction of Hopf boundaries due to mode interaction and harmonic truncation effects.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"187 ","pages":"Article 104005"},"PeriodicalIF":14.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semianalytic stability algorithm in the frequency domain for interrupted milling\",\"authors\":\"M. Sanz-Calle , J. Munoa , A. Iglesias , L.N. López de Lacalle , Z. Dombovari\",\"doi\":\"10.1016/j.ijmachtools.2023.104005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The construction of stability diagrams of interrupted milling cases is generally carried out by means of time-consuming numerical methods in either frequency or time domain, since the period doubling lobes arising under interrupted cutting are omitted by the time-averaged parametric scan of the traditional zeroth order approximation. This paper presents a novel seminalytic method in the frequency domain for interrupted milling. Taking advantage of their analytical chatter frequency distribution, this method adds the period doubling lobes calculated in a single frequency scan to the existing Hopf limits of the zeroth order solution. This, together with intelligent selection of scanning frequency ranges and truncation to the minimum set of harmonics, allows very fast calculation of the stability charts of interrupted milling cases while retaining the analytical basis and advantages of the zeroth order algorithm. The method accurately describes the stability limits at period doubling dominated zones and improves the existing zeroth order solution, but exhibits slight inaccuracies in the prediction of Hopf boundaries due to mode interaction and harmonic truncation effects.</p></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"187 \",\"pages\":\"Article 104005\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890695523000135\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695523000135","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Semianalytic stability algorithm in the frequency domain for interrupted milling
The construction of stability diagrams of interrupted milling cases is generally carried out by means of time-consuming numerical methods in either frequency or time domain, since the period doubling lobes arising under interrupted cutting are omitted by the time-averaged parametric scan of the traditional zeroth order approximation. This paper presents a novel seminalytic method in the frequency domain for interrupted milling. Taking advantage of their analytical chatter frequency distribution, this method adds the period doubling lobes calculated in a single frequency scan to the existing Hopf limits of the zeroth order solution. This, together with intelligent selection of scanning frequency ranges and truncation to the minimum set of harmonics, allows very fast calculation of the stability charts of interrupted milling cases while retaining the analytical basis and advantages of the zeroth order algorithm. The method accurately describes the stability limits at period doubling dominated zones and improves the existing zeroth order solution, but exhibits slight inaccuracies in the prediction of Hopf boundaries due to mode interaction and harmonic truncation effects.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).