一种新的用于败血症的卷积神经网络结构增强了微循环功能障碍的模式识别

Carolina Toledo Ferraz, Ana Maria Alvim Liberatore, Tatiane Lissa Yamada, Ivan Hong Jun Koh
{"title":"一种新的用于败血症的卷积神经网络结构增强了微循环功能障碍的模式识别","authors":"Carolina Toledo Ferraz,&nbsp;Ana Maria Alvim Liberatore,&nbsp;Tatiane Lissa Yamada,&nbsp;Ivan Hong Jun Koh","doi":"10.1016/j.ibmed.2023.100106","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Triggers of organ dysfunction have been associated with the worsening of microcirculatory dysfunction in sepsis, and because microcirculatory changes occur before macro-hemodynamic abnormalities, they can potentially detect disease progression early on. The difficulty in distinguishing altered microcirculatory characteristics corresponding to varying stages of sepsis severity has been a limiting factor for the use of microcirculatory imaging as a diagnostic and prognostic tool in sepsis. The aim of this study was to develop a convolutional neural network (CNN) based on progressive sublingual microcirculatory dysfunction images in sepsis, and test its diagnostic accuracy for these progressive stages.</p></div><div><h3>Methods</h3><p>Sepsis was induced in Wistar rats (2 mL of <em>E. coli</em> 10<sup>8</sup> CFU/mL inoculation into the jugular vein), and 2 mL saline injection in sham animals was the control. Sublingual microvessels of all animals with surrounding tissue images were captured by Sidestream dark field imaging (SDF) at T0 (basal) and T2, T4, and T6 h after sepsis induction. From a total of 137 videos, 37.930 frames were extracted; a part (29.341) was used for the training of Resnet-50 (CNN-construct), and the remaining (8.589) was used for validation of accuracy.</p></div><div><h3>Results</h3><p>The CNN-construct successfully classified the various stages of sepsis with a high accuracy (97.07%). The average AUC value of the ROC curve was 0.9833, and the sensitivity and specificity ranged from 94.57% to 99.91%, respectively, at all time points.</p></div><div><h3>Conclusions</h3><p>By blind testing with new sublingual microscopy images captured at different periods of the acute phase of sepsis, the CNN-construct was able to accurately diagnose the four stages of sepsis severity. Thus, this new method presents the diagnostic potential for different stages of microcirculatory dysfunction and enables the prediction of clinical evolution and therapeutic efficacy. Automated simultaneous assessment of multiple characteristics, both microvessels and adjacent tissues, may account for this diagnostic skill. As such a task cannot be analyzed with human visual criteria only, CNN is a novel method to identify the different stages of sepsis by assessing the distinct features of each stage.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"8 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new convolutional neural network-construct for sepsis enhances pattern identification of microcirculatory dysfunction\",\"authors\":\"Carolina Toledo Ferraz,&nbsp;Ana Maria Alvim Liberatore,&nbsp;Tatiane Lissa Yamada,&nbsp;Ivan Hong Jun Koh\",\"doi\":\"10.1016/j.ibmed.2023.100106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Triggers of organ dysfunction have been associated with the worsening of microcirculatory dysfunction in sepsis, and because microcirculatory changes occur before macro-hemodynamic abnormalities, they can potentially detect disease progression early on. The difficulty in distinguishing altered microcirculatory characteristics corresponding to varying stages of sepsis severity has been a limiting factor for the use of microcirculatory imaging as a diagnostic and prognostic tool in sepsis. The aim of this study was to develop a convolutional neural network (CNN) based on progressive sublingual microcirculatory dysfunction images in sepsis, and test its diagnostic accuracy for these progressive stages.</p></div><div><h3>Methods</h3><p>Sepsis was induced in Wistar rats (2 mL of <em>E. coli</em> 10<sup>8</sup> CFU/mL inoculation into the jugular vein), and 2 mL saline injection in sham animals was the control. Sublingual microvessels of all animals with surrounding tissue images were captured by Sidestream dark field imaging (SDF) at T0 (basal) and T2, T4, and T6 h after sepsis induction. From a total of 137 videos, 37.930 frames were extracted; a part (29.341) was used for the training of Resnet-50 (CNN-construct), and the remaining (8.589) was used for validation of accuracy.</p></div><div><h3>Results</h3><p>The CNN-construct successfully classified the various stages of sepsis with a high accuracy (97.07%). The average AUC value of the ROC curve was 0.9833, and the sensitivity and specificity ranged from 94.57% to 99.91%, respectively, at all time points.</p></div><div><h3>Conclusions</h3><p>By blind testing with new sublingual microscopy images captured at different periods of the acute phase of sepsis, the CNN-construct was able to accurately diagnose the four stages of sepsis severity. Thus, this new method presents the diagnostic potential for different stages of microcirculatory dysfunction and enables the prediction of clinical evolution and therapeutic efficacy. Automated simultaneous assessment of multiple characteristics, both microvessels and adjacent tissues, may account for this diagnostic skill. As such a task cannot be analyzed with human visual criteria only, CNN is a novel method to identify the different stages of sepsis by assessing the distinct features of each stage.</p></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"8 \",\"pages\":\"Article 100106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521223000200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521223000200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景器官功能障碍的触发因素与败血症中微循环功能障碍的恶化有关,并且由于微循环变化发生在宏观血液动力学异常之前,它们有可能在早期发现疾病进展。区分与败血症严重程度不同阶段相对应的微循环特征改变的困难一直是使用微循环成像作为败血症诊断和预后工具的限制因素。本研究的目的是开发一种基于败血症进行性舌下微循环功能障碍图像的卷积神经网络(CNN),并测试其对这些进行性阶段的诊断准确性。方法用Wistar大鼠(颈静脉注射大肠杆菌108CFU/mL,2mL)诱导脓毒症,假动物注射生理盐水2mL作为对照。在败血症诱导后T0(基础)和T2、T4和T6小时,通过Sidestream暗场成像(SDF)捕获所有动物的舌下微血管及其周围组织图像。从总共137个视频中,提取了37.930帧;一部分(29.341)用于训练Resnet-50(CNN结构),其余部分(8.589)用于验证准确性。结果CNN构建成功地对败血症的各个阶段进行了高准确率(97.07%)的分类。ROC曲线的平均AUC值为0.9833,在所有时间点的敏感性和特异性分别为94.57%和99.91%。结论通过对脓毒症急性期不同时期新拍摄的舌下显微镜图像进行盲检,CNN构建能够准确诊断脓毒症严重程度的四个阶段。因此,这种新方法为不同阶段的微循环功能障碍提供了诊断潜力,并能够预测临床进展和治疗效果。对微血管和邻近组织的多种特征进行自动同时评估可能是这种诊断技巧的原因。由于这样的任务不能仅用人类视觉标准进行分析,CNN是一种通过评估每个阶段的不同特征来识别败血症不同阶段的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new convolutional neural network-construct for sepsis enhances pattern identification of microcirculatory dysfunction

Background

Triggers of organ dysfunction have been associated with the worsening of microcirculatory dysfunction in sepsis, and because microcirculatory changes occur before macro-hemodynamic abnormalities, they can potentially detect disease progression early on. The difficulty in distinguishing altered microcirculatory characteristics corresponding to varying stages of sepsis severity has been a limiting factor for the use of microcirculatory imaging as a diagnostic and prognostic tool in sepsis. The aim of this study was to develop a convolutional neural network (CNN) based on progressive sublingual microcirculatory dysfunction images in sepsis, and test its diagnostic accuracy for these progressive stages.

Methods

Sepsis was induced in Wistar rats (2 mL of E. coli 108 CFU/mL inoculation into the jugular vein), and 2 mL saline injection in sham animals was the control. Sublingual microvessels of all animals with surrounding tissue images were captured by Sidestream dark field imaging (SDF) at T0 (basal) and T2, T4, and T6 h after sepsis induction. From a total of 137 videos, 37.930 frames were extracted; a part (29.341) was used for the training of Resnet-50 (CNN-construct), and the remaining (8.589) was used for validation of accuracy.

Results

The CNN-construct successfully classified the various stages of sepsis with a high accuracy (97.07%). The average AUC value of the ROC curve was 0.9833, and the sensitivity and specificity ranged from 94.57% to 99.91%, respectively, at all time points.

Conclusions

By blind testing with new sublingual microscopy images captured at different periods of the acute phase of sepsis, the CNN-construct was able to accurately diagnose the four stages of sepsis severity. Thus, this new method presents the diagnostic potential for different stages of microcirculatory dysfunction and enables the prediction of clinical evolution and therapeutic efficacy. Automated simultaneous assessment of multiple characteristics, both microvessels and adjacent tissues, may account for this diagnostic skill. As such a task cannot be analyzed with human visual criteria only, CNN is a novel method to identify the different stages of sepsis by assessing the distinct features of each stage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1