军事急诊科分诊人工智能模型的发展:关注士兵的腹痛

Yoon-Seop Kim , Min Woong Kim , Je Seop Lee , Hee Seung Kang , Erdenebayar Urtnasan , Jung Woo Lee , Ji Hun Kim
{"title":"军事急诊科分诊人工智能模型的发展:关注士兵的腹痛","authors":"Yoon-Seop Kim ,&nbsp;Min Woong Kim ,&nbsp;Je Seop Lee ,&nbsp;Hee Seung Kang ,&nbsp;Erdenebayar Urtnasan ,&nbsp;Jung Woo Lee ,&nbsp;Ji Hun Kim","doi":"10.1016/j.ibmed.2023.100112","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>In military settings, determining whether a patient with abdominal pain requires emergency care can be challenging due to the absence or inexperience of medical staff. Misjudging the severity of abdominal pain can lead to delayed treatment or unnecessary transfers, both of which consume valuable resources. Therefore, our aim was to develop an artificial intelligence model capable of classifying the urgency of abdominal pain cases, taking into account patient characteristics.</p></div><div><h3>Methods</h3><p>We collected structured and unstructured data from patients with abdominal pain visiting South Korean military hospital emergency rooms between January 2015 and 2020. After excluding patients with missing values, 20,432 patients were enrolled. Structured data consisted of age, sex, vital signs, past medical history, and symptoms, while unstructured data included preprocessed free text descriptions of chief complaints and present illness. Patients were divided into training, validation, and test datasets in an 8:1:1 ratio. Using structured data, we developed four conventional machine learning models and a novel mixed model, which combined one of the best performing machine learning models with emergency medical knowledge. And we also created a deep learning model using both structured and unstructured data.</p></div><div><h3>Results</h3><p>Xgboost demonstrated the highest performance among the six models, <u>with an area under the precision-recall curve (AUPRC) score of 0.61. The other five models achieved AUPRC scores as follows: logistic regression (0.24), decision tree (0.22), multi-layer perceptron (0.21), deep neural network (0.58), and mixed model (0.58).</u></p></div><div><h3>Conclusion</h3><p>This study is the first to develop an AI model for identifying emergency cases of abdominal pain in a military setting. With more balanced and better-structured datasets, clinically significant AI model could be developed based on the findings of this study.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"8 ","pages":"Article 100112"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an artificial intelligence model for triage in a military emergency department: Focusing on abdominal pain in soldiers\",\"authors\":\"Yoon-Seop Kim ,&nbsp;Min Woong Kim ,&nbsp;Je Seop Lee ,&nbsp;Hee Seung Kang ,&nbsp;Erdenebayar Urtnasan ,&nbsp;Jung Woo Lee ,&nbsp;Ji Hun Kim\",\"doi\":\"10.1016/j.ibmed.2023.100112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>In military settings, determining whether a patient with abdominal pain requires emergency care can be challenging due to the absence or inexperience of medical staff. Misjudging the severity of abdominal pain can lead to delayed treatment or unnecessary transfers, both of which consume valuable resources. Therefore, our aim was to develop an artificial intelligence model capable of classifying the urgency of abdominal pain cases, taking into account patient characteristics.</p></div><div><h3>Methods</h3><p>We collected structured and unstructured data from patients with abdominal pain visiting South Korean military hospital emergency rooms between January 2015 and 2020. After excluding patients with missing values, 20,432 patients were enrolled. Structured data consisted of age, sex, vital signs, past medical history, and symptoms, while unstructured data included preprocessed free text descriptions of chief complaints and present illness. Patients were divided into training, validation, and test datasets in an 8:1:1 ratio. Using structured data, we developed four conventional machine learning models and a novel mixed model, which combined one of the best performing machine learning models with emergency medical knowledge. And we also created a deep learning model using both structured and unstructured data.</p></div><div><h3>Results</h3><p>Xgboost demonstrated the highest performance among the six models, <u>with an area under the precision-recall curve (AUPRC) score of 0.61. The other five models achieved AUPRC scores as follows: logistic regression (0.24), decision tree (0.22), multi-layer perceptron (0.21), deep neural network (0.58), and mixed model (0.58).</u></p></div><div><h3>Conclusion</h3><p>This study is the first to develop an AI model for identifying emergency cases of abdominal pain in a military setting. With more balanced and better-structured datasets, clinically significant AI model could be developed based on the findings of this study.</p></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"8 \",\"pages\":\"Article 100112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521223000261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521223000261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景在军事环境中,由于医务人员的缺席或缺乏经验,确定腹痛患者是否需要紧急护理可能具有挑战性。误判腹痛的严重程度可能导致治疗延迟或不必要的转移,这两者都会消耗宝贵的资源。因此,我们的目标是开发一种人工智能模型,能够根据患者特征对腹痛病例的紧迫性进行分类。方法我们收集了2015年1月至2020年1月期间访问韩国军队医院急诊室的腹痛患者的结构化和非结构化数据。在排除缺失值的患者后,共有20432名患者入选。结构化数据包括年龄、性别、生命体征、既往病史和症状,而非结构化数据包括对主要投诉和当前疾病的预处理自由文本描述。将患者按8:1:1的比例分为训练、验证和测试数据集。使用结构化数据,我们开发了四个传统的机器学习模型和一个新的混合模型,该模型将性能最好的机器学习模式之一与急救医学知识相结合。我们还使用结构化和非结构化数据创建了一个深度学习模型。结果Xgboost在六种模型中表现出最高的性能,精确召回曲线下面积(AUPRC)得分为0.61。其他五个模型的AUPRC得分分别为:逻辑回归(0.24)、决策树(0.22)、多层感知器(0.21)、深度神经网络(0.58)和混合模型(0.58。有了更平衡、结构更好的数据集,可以根据这项研究的结果开发出具有临床意义的人工智能模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an artificial intelligence model for triage in a military emergency department: Focusing on abdominal pain in soldiers

Background

In military settings, determining whether a patient with abdominal pain requires emergency care can be challenging due to the absence or inexperience of medical staff. Misjudging the severity of abdominal pain can lead to delayed treatment or unnecessary transfers, both of which consume valuable resources. Therefore, our aim was to develop an artificial intelligence model capable of classifying the urgency of abdominal pain cases, taking into account patient characteristics.

Methods

We collected structured and unstructured data from patients with abdominal pain visiting South Korean military hospital emergency rooms between January 2015 and 2020. After excluding patients with missing values, 20,432 patients were enrolled. Structured data consisted of age, sex, vital signs, past medical history, and symptoms, while unstructured data included preprocessed free text descriptions of chief complaints and present illness. Patients were divided into training, validation, and test datasets in an 8:1:1 ratio. Using structured data, we developed four conventional machine learning models and a novel mixed model, which combined one of the best performing machine learning models with emergency medical knowledge. And we also created a deep learning model using both structured and unstructured data.

Results

Xgboost demonstrated the highest performance among the six models, with an area under the precision-recall curve (AUPRC) score of 0.61. The other five models achieved AUPRC scores as follows: logistic regression (0.24), decision tree (0.22), multi-layer perceptron (0.21), deep neural network (0.58), and mixed model (0.58).

Conclusion

This study is the first to develop an AI model for identifying emergency cases of abdominal pain in a military setting. With more balanced and better-structured datasets, clinically significant AI model could be developed based on the findings of this study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1