{"title":"压力瞬变分析中的碳酸盐超渗透率:巴西盐下层诊断特征目录","authors":"Jordan G. Mimoun , Fermín Fernández-Ibáñez","doi":"10.1016/j.petrol.2022.111173","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Dynamic appraisal in carbonates with excess permeability is critical to successful reservoir modeling and depletion planning. Accurate recognition and characterization of a dual-porosity system may translate to improved project performance. We present a catalog of diagnostic signatures that elevate </span>pressure transient<span> analysis beyond the traditional V shape, to aid in identifying non-matrix features’ presence, extent, and contribution to reservoir performance. We reviewed 152 well tests from the Brazil<span> Pre-Salt, integrated with multi-scale static and dynamic data (conventional core, borehole image logs, seismic, and drilling losses). A recurring set of eight signatures with characteristic slopes and shapes stood out, which we reconciled with geologic concepts and tested with numerical modeling. These signatures reveal key insights into excess-permeability architecture and non-matrix types, from touching vugs to caves, from </span></span></span>natural fractures<span> to fault damage zones. They will assist subsurface teams to optimally frame well test objectives and maximize value of information during early appraisal and field development. They will help enhance reservoir performance prediction, by enabling a comprehensive use of well test data in geologic and reservoir simulation models.</span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111173"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonate excess permeability in pressure transient analysis: A catalog of diagnostic signatures from the Brazil Pre-Salt\",\"authors\":\"Jordan G. Mimoun , Fermín Fernández-Ibáñez\",\"doi\":\"10.1016/j.petrol.2022.111173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Dynamic appraisal in carbonates with excess permeability is critical to successful reservoir modeling and depletion planning. Accurate recognition and characterization of a dual-porosity system may translate to improved project performance. We present a catalog of diagnostic signatures that elevate </span>pressure transient<span> analysis beyond the traditional V shape, to aid in identifying non-matrix features’ presence, extent, and contribution to reservoir performance. We reviewed 152 well tests from the Brazil<span> Pre-Salt, integrated with multi-scale static and dynamic data (conventional core, borehole image logs, seismic, and drilling losses). A recurring set of eight signatures with characteristic slopes and shapes stood out, which we reconciled with geologic concepts and tested with numerical modeling. These signatures reveal key insights into excess-permeability architecture and non-matrix types, from touching vugs to caves, from </span></span></span>natural fractures<span> to fault damage zones. They will assist subsurface teams to optimally frame well test objectives and maximize value of information during early appraisal and field development. They will help enhance reservoir performance prediction, by enabling a comprehensive use of well test data in geologic and reservoir simulation models.</span></p></div>\",\"PeriodicalId\":16717,\"journal\":{\"name\":\"Journal of Petroleum Science and Engineering\",\"volume\":\"220 \",\"pages\":\"Article 111173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920410522010257\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010257","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Carbonate excess permeability in pressure transient analysis: A catalog of diagnostic signatures from the Brazil Pre-Salt
Dynamic appraisal in carbonates with excess permeability is critical to successful reservoir modeling and depletion planning. Accurate recognition and characterization of a dual-porosity system may translate to improved project performance. We present a catalog of diagnostic signatures that elevate pressure transient analysis beyond the traditional V shape, to aid in identifying non-matrix features’ presence, extent, and contribution to reservoir performance. We reviewed 152 well tests from the Brazil Pre-Salt, integrated with multi-scale static and dynamic data (conventional core, borehole image logs, seismic, and drilling losses). A recurring set of eight signatures with characteristic slopes and shapes stood out, which we reconciled with geologic concepts and tested with numerical modeling. These signatures reveal key insights into excess-permeability architecture and non-matrix types, from touching vugs to caves, from natural fractures to fault damage zones. They will assist subsurface teams to optimally frame well test objectives and maximize value of information during early appraisal and field development. They will help enhance reservoir performance prediction, by enabling a comprehensive use of well test data in geologic and reservoir simulation models.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.