生物质热反应过程激光诱导荧光光谱研究进展

Q3 Energy 燃料化学学报 Pub Date : 2023-07-01 DOI:10.1016/S1872-5813(23)60338-X
ZHAO Zheng , SU Sheng , SONG Ya-wei , Liu Yu-shuai , CHEN Yi-feng , JIA Meng-chuan , XU Kai , WANG Yi , HU Song , XIANG Jun
{"title":"生物质热反应过程激光诱导荧光光谱研究进展","authors":"ZHAO Zheng ,&nbsp;SU Sheng ,&nbsp;SONG Ya-wei ,&nbsp;Liu Yu-shuai ,&nbsp;CHEN Yi-feng ,&nbsp;JIA Meng-chuan ,&nbsp;XU Kai ,&nbsp;WANG Yi ,&nbsp;HU Song ,&nbsp;XIANG Jun","doi":"10.1016/S1872-5813(23)60338-X","DOIUrl":null,"url":null,"abstract":"<div><h3>Abstract</h3><p>A profound study on the characteristics of pyrolysis and combustion of biomass and the generation and transfer of alkali metals can provide theoretical basis for the clean and efficient utilization of biomass. Due to the low measurement accuracy and time lag, traditional measurement methods have insufficient understanding of the biomass thermal reaction process. Laser induced fluorescence (LIF) technology has the advantages of non-disturbance, real-time <em>in-situ</em> measurement, strong component selectivity, good sensitivity, and high spatial and temporal resolution, which has been used in more and more studies on the biomass thermal reaction processes. This paper mainly reviews the application of LIF technologies in the research on the characteristics of biomass pyrolysis, combustion, and alkali metal release in recent years, analyzes the release and evolution behavior and formation mechanism of volatile matter during biomass pyrolysis under different reaction conditions, and expounds the flame structure information and alkali metal release, migration, and transformation characteristics during biomass combustion. Finally, some shortcomings in the current research and the future research directions are put forward.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress in thermal reaction processes of biomass with laser-induced fluorescence spectroscopy\",\"authors\":\"ZHAO Zheng ,&nbsp;SU Sheng ,&nbsp;SONG Ya-wei ,&nbsp;Liu Yu-shuai ,&nbsp;CHEN Yi-feng ,&nbsp;JIA Meng-chuan ,&nbsp;XU Kai ,&nbsp;WANG Yi ,&nbsp;HU Song ,&nbsp;XIANG Jun\",\"doi\":\"10.1016/S1872-5813(23)60338-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Abstract</h3><p>A profound study on the characteristics of pyrolysis and combustion of biomass and the generation and transfer of alkali metals can provide theoretical basis for the clean and efficient utilization of biomass. Due to the low measurement accuracy and time lag, traditional measurement methods have insufficient understanding of the biomass thermal reaction process. Laser induced fluorescence (LIF) technology has the advantages of non-disturbance, real-time <em>in-situ</em> measurement, strong component selectivity, good sensitivity, and high spatial and temporal resolution, which has been used in more and more studies on the biomass thermal reaction processes. This paper mainly reviews the application of LIF technologies in the research on the characteristics of biomass pyrolysis, combustion, and alkali metal release in recent years, analyzes the release and evolution behavior and formation mechanism of volatile matter during biomass pyrolysis under different reaction conditions, and expounds the flame structure information and alkali metal release, migration, and transformation characteristics during biomass combustion. Finally, some shortcomings in the current research and the future research directions are put forward.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187258132360338X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187258132360338X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

深入研究生物质热解燃烧特性以及碱金属的生成和转移,可以为生物质的清洁高效利用提供理论依据。传统的测量方法由于测量精度低和时间滞后,对生物质热反应过程的认识不足。激光诱导荧光(LIF)技术具有无干扰、实时原位测量、组分选择性强、灵敏度好、时空分辨率高等优点,在生物质热反应过程的研究中得到越来越多的应用。本文主要综述了近年来LIF技术在生物质热解、燃烧和碱金属释放特性研究中的应用,分析了不同反应条件下生物质热解过程中挥发分的释放演化行为和形成机理,阐述了生物质燃烧过程中火焰结构信息和碱金属释放、迁移、转化特征。最后,提出了目前研究中存在的不足和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research progress in thermal reaction processes of biomass with laser-induced fluorescence spectroscopy

Abstract

A profound study on the characteristics of pyrolysis and combustion of biomass and the generation and transfer of alkali metals can provide theoretical basis for the clean and efficient utilization of biomass. Due to the low measurement accuracy and time lag, traditional measurement methods have insufficient understanding of the biomass thermal reaction process. Laser induced fluorescence (LIF) technology has the advantages of non-disturbance, real-time in-situ measurement, strong component selectivity, good sensitivity, and high spatial and temporal resolution, which has been used in more and more studies on the biomass thermal reaction processes. This paper mainly reviews the application of LIF technologies in the research on the characteristics of biomass pyrolysis, combustion, and alkali metal release in recent years, analyzes the release and evolution behavior and formation mechanism of volatile matter during biomass pyrolysis under different reaction conditions, and expounds the flame structure information and alkali metal release, migration, and transformation characteristics during biomass combustion. Finally, some shortcomings in the current research and the future research directions are put forward.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
期刊最新文献
The promotional effects of ZrO2 modification on the activity and selectivity of Co/SiC catalysts for Fischer-Tropsch synthesis Promoted stability of Cu/ZnO/Al2O3 catalysts formethanol production from CO2 hydrogenation by La modification Theoretical calculations of pyridine adsorption on the surfaces of Ti, Zr, N doped graphene Refined Ni, Co-induced synthesis of NiCoP nanoparticles uniformly embedded in NCNTs: A robust dual-functional electrocatalyst for water splitting Effect of the metal-support interaction in the Cu/ZnO catalyst on its performance in the hydrogenation of furfural to furfuryl alcohol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1