用动力锥贯仪分析不同车轮作用下的土壤压实

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Journal of Terramechanics Pub Date : 2023-09-15 DOI:10.1016/j.jterra.2023.09.001
Rania MAJDOUBI , Lhoussaine MASMOUDI , Abderahmane ELHARIF
{"title":"用动力锥贯仪分析不同车轮作用下的土壤压实","authors":"Rania MAJDOUBI ,&nbsp;Lhoussaine MASMOUDI ,&nbsp;Abderahmane ELHARIF","doi":"10.1016/j.jterra.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Soil compaction is one of the major problems in modern agriculture. Thus, the workability of a soil reflects to its ability to accept the traffic of agricultural machinery and implements. Water content and compaction are factors that influence the rheological behavior of the soil. the representation of soil shows limitations regarding the behavior of the tire-soil interface and its resistance to deformation is both influenced by the different forms of loading application along a tire path on a soil particle. This paper presents a study of the impact of multiple wheel passage, the wheel velocity, and the weight applied to the wheel on the agricultural soil represented by the cone index. To do this, we were inspired to launch an investigation for soil compaction determination at three levels of wheel load, three levels of velocity and at tillage, first, second and third passages of wheel with three replications on clayey sandy mixed grain soil. The results of this study shows that the greatest soil compaction occurred at the highest wheel load (1000 N), the lowest speed (0.1 m/s) and the highest number of passes (third pass), this leads to minimize multiple passes and or follow the same path, also, keeping the load on the ground as low as possible (weight of the machines), and working at high speed in agricultural fields.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"111 ","pages":"Pages 21-30"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of soil compaction under different wheel applications using a dynamical cone penetrometer\",\"authors\":\"Rania MAJDOUBI ,&nbsp;Lhoussaine MASMOUDI ,&nbsp;Abderahmane ELHARIF\",\"doi\":\"10.1016/j.jterra.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil compaction is one of the major problems in modern agriculture. Thus, the workability of a soil reflects to its ability to accept the traffic of agricultural machinery and implements. Water content and compaction are factors that influence the rheological behavior of the soil. the representation of soil shows limitations regarding the behavior of the tire-soil interface and its resistance to deformation is both influenced by the different forms of loading application along a tire path on a soil particle. This paper presents a study of the impact of multiple wheel passage, the wheel velocity, and the weight applied to the wheel on the agricultural soil represented by the cone index. To do this, we were inspired to launch an investigation for soil compaction determination at three levels of wheel load, three levels of velocity and at tillage, first, second and third passages of wheel with three replications on clayey sandy mixed grain soil. The results of this study shows that the greatest soil compaction occurred at the highest wheel load (1000 N), the lowest speed (0.1 m/s) and the highest number of passes (third pass), this leads to minimize multiple passes and or follow the same path, also, keeping the load on the ground as low as possible (weight of the machines), and working at high speed in agricultural fields.</p></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"111 \",\"pages\":\"Pages 21-30\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489823000824\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489823000824","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

土壤压实是现代农业的主要问题之一。因此,土壤的可工作性反映了其接受农业机械和农具运输的能力。含水量和压实度是影响土壤流变特性的因素。土的表示显示了轮胎-土界面行为的局限性,其抗变形能力受到沿轮胎路径施加在土壤颗粒上的不同形式的载荷的影响。本文研究了多轮通道、轮速和轮载重量对以圆锥指数表示的农业土壤的影响。为此,我们在粘砂混合颗粒土上开展了轮载、速度、耕作、轮一、轮二、轮三遍三次重复的土壤压实测定研究。本研究结果表明,最大的土壤压实发生在最高轮载(1000 N),最低速度(0.1 m/s)和最多的通过次数(第三次),这导致尽量减少多次通过或遵循相同的路径,同时,保持地面上的负荷尽可能低(机器的重量),并在农业领域高速工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of soil compaction under different wheel applications using a dynamical cone penetrometer

Soil compaction is one of the major problems in modern agriculture. Thus, the workability of a soil reflects to its ability to accept the traffic of agricultural machinery and implements. Water content and compaction are factors that influence the rheological behavior of the soil. the representation of soil shows limitations regarding the behavior of the tire-soil interface and its resistance to deformation is both influenced by the different forms of loading application along a tire path on a soil particle. This paper presents a study of the impact of multiple wheel passage, the wheel velocity, and the weight applied to the wheel on the agricultural soil represented by the cone index. To do this, we were inspired to launch an investigation for soil compaction determination at three levels of wheel load, three levels of velocity and at tillage, first, second and third passages of wheel with three replications on clayey sandy mixed grain soil. The results of this study shows that the greatest soil compaction occurred at the highest wheel load (1000 N), the lowest speed (0.1 m/s) and the highest number of passes (third pass), this leads to minimize multiple passes and or follow the same path, also, keeping the load on the ground as low as possible (weight of the machines), and working at high speed in agricultural fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
期刊最新文献
Acoustic winter terrain classification for offroad autonomous vehicles Investigation of steer preview methods to improve predictive control methods on off-road vehicles with realistic actuator delays Comparison of selected tire-terrain interaction models from the aspect of accuracy and computational intensity Simulation of cohesive-frictional artificial soil-to-blade interactions using an elasto-plastic discrete element model with stress-dependent cohesion Modelling and simulation fundamentals in design for ground vehicle mobility Part II: Western approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1