{"title":"通过贝叶斯优化查找异构计算中触发浮点异常的输入","authors":"Ignacio Laguna , Anh Tran , Ganesh Gopalakrishnan","doi":"10.1016/j.parco.2023.103042","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Testing code for floating-point exceptions is crucial as exceptions can quickly propagate and produce unreliable numerical answers. The state-of-the-art to test for floating-point exceptions in heterogeneous systems<span> is quite limited and solutions require the application’s source code, which precludes their use in accelerated libraries where the source is not publicly available. We present an approach to find inputs that trigger floating-point exceptions in black-box CPU or </span></span>GPU functions, i.e., functions where the source code and information about input bounds are unavailable. Our approach is the first to use Bayesian optimization (BO) to identify such inputs and uses novel strategies to overcome the challenges that arise in applying BO to this problem. We implement our approach in the </span><span><span>Xscope</span></span> framework and demonstrate it on 58 functions from the CUDA Math Library and 81 functions from the Intel Math Library. <span><span>Xscope</span></span> is able to identify inputs that trigger exceptions in about 73% of the tested functions.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"117 ","pages":"Article 103042"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finding inputs that trigger floating-point exceptions in heterogeneous computing via Bayesian optimization\",\"authors\":\"Ignacio Laguna , Anh Tran , Ganesh Gopalakrishnan\",\"doi\":\"10.1016/j.parco.2023.103042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Testing code for floating-point exceptions is crucial as exceptions can quickly propagate and produce unreliable numerical answers. The state-of-the-art to test for floating-point exceptions in heterogeneous systems<span> is quite limited and solutions require the application’s source code, which precludes their use in accelerated libraries where the source is not publicly available. We present an approach to find inputs that trigger floating-point exceptions in black-box CPU or </span></span>GPU functions, i.e., functions where the source code and information about input bounds are unavailable. Our approach is the first to use Bayesian optimization (BO) to identify such inputs and uses novel strategies to overcome the challenges that arise in applying BO to this problem. We implement our approach in the </span><span><span>Xscope</span></span> framework and demonstrate it on 58 functions from the CUDA Math Library and 81 functions from the Intel Math Library. <span><span>Xscope</span></span> is able to identify inputs that trigger exceptions in about 73% of the tested functions.</p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"117 \",\"pages\":\"Article 103042\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819123000480\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819123000480","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Finding inputs that trigger floating-point exceptions in heterogeneous computing via Bayesian optimization
Testing code for floating-point exceptions is crucial as exceptions can quickly propagate and produce unreliable numerical answers. The state-of-the-art to test for floating-point exceptions in heterogeneous systems is quite limited and solutions require the application’s source code, which precludes their use in accelerated libraries where the source is not publicly available. We present an approach to find inputs that trigger floating-point exceptions in black-box CPU or GPU functions, i.e., functions where the source code and information about input bounds are unavailable. Our approach is the first to use Bayesian optimization (BO) to identify such inputs and uses novel strategies to overcome the challenges that arise in applying BO to this problem. We implement our approach in the Xscope framework and demonstrate it on 58 functions from the CUDA Math Library and 81 functions from the Intel Math Library. Xscope is able to identify inputs that trigger exceptions in about 73% of the tested functions.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications