沿海幽灵林独特的生物地球化学特征——海平面上升影响下淡水森林湿地向盐沼的转变

Huan Chen , Alexander Martin Rücker , Yina Liu , David Miller , Jia-Ning Dai , Jun-Jian Wang , Dennis O. Suhre , Li-Jung Kuo , William H. Conner , Barbara J. Campbell , Robert C. Rhew , Alex T. Chow
{"title":"沿海幽灵林独特的生物地球化学特征——海平面上升影响下淡水森林湿地向盐沼的转变","authors":"Huan Chen ,&nbsp;Alexander Martin Rücker ,&nbsp;Yina Liu ,&nbsp;David Miller ,&nbsp;Jia-Ning Dai ,&nbsp;Jun-Jian Wang ,&nbsp;Dennis O. Suhre ,&nbsp;Li-Jung Kuo ,&nbsp;William H. Conner ,&nbsp;Barbara J. Campbell ,&nbsp;Robert C. Rhew ,&nbsp;Alex T. Chow","doi":"10.1016/j.seh.2023.100005","DOIUrl":null,"url":null,"abstract":"<div><p>Seawater intrusion by rising sea levels has created large areas of ghost forests along low-lying coastal wetlands in the southeastern USA, but more information is needed to better understand its soil biogeochemistry. Here, we characterized several soil and environmental parameters, including tree litterfall, surface and soil porewater quality, emissions of greenhouse gases, and microbial communities along a forest-to-marsh transect, including a freshwater forested wetland, a salt-impacted degraded ghost forest, and a salt marsh in Winyah Bay, SC, USA. General water quality parameters such as electrical conductivity, dissolved oxygen, temperature and aboveground productivity showed distinct trends along the freshwater forested wetland → degraded ghost forest → salt marsh transect, whereas there were no obvious trends in soil biogeochemical parameters. Concentrations of dissolved organic carbon (DOC) in the degraded ghost forest were generally similar to the freshwater forested wetland, but on average were higher than those in the salt marsh. More labile molecular features observed through Fourier transform ion cyclotron resonance mass spectrometry indicated an increase in the DOC biodegradability along the forest-to-marsh transect. Greater DOC biodegradability in the degraded ghost forest was observed and confirmed through its generation of the highest average electrical currents from sediment microbial fuel cells. The lowest CH<sub>4</sub> and CO<sub>2</sub> fluxes, but the highest degradable DOC, were observed in the degraded ghost forest, suggesting that lateral C export is important in this wetland. Moreover, the degraded ghost forest was dominated by a unique microbial community, including high abundance of Woesearchaeia, which enables carbon metabolism via symbiotic and/or fermentation-based lifestyles. Our study illustrates a ghost forest with very different characteristics compared to its parental freshwater forested wetland and its transitioned salt marsh. Data obtained from the two endmember ecosystems along the salinity gradient transect were not useful in predicting the unique biogeochemical processes in the degraded ghost forest.</p></div>","PeriodicalId":94356,"journal":{"name":"Soil & Environmental Health","volume":"1 1","pages":"Article 100005"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unique biogeochemical characteristics in coastal ghost forests – The transition from freshwater forested wetland to salt marsh under the influences of sea level rise\",\"authors\":\"Huan Chen ,&nbsp;Alexander Martin Rücker ,&nbsp;Yina Liu ,&nbsp;David Miller ,&nbsp;Jia-Ning Dai ,&nbsp;Jun-Jian Wang ,&nbsp;Dennis O. Suhre ,&nbsp;Li-Jung Kuo ,&nbsp;William H. Conner ,&nbsp;Barbara J. Campbell ,&nbsp;Robert C. Rhew ,&nbsp;Alex T. Chow\",\"doi\":\"10.1016/j.seh.2023.100005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seawater intrusion by rising sea levels has created large areas of ghost forests along low-lying coastal wetlands in the southeastern USA, but more information is needed to better understand its soil biogeochemistry. Here, we characterized several soil and environmental parameters, including tree litterfall, surface and soil porewater quality, emissions of greenhouse gases, and microbial communities along a forest-to-marsh transect, including a freshwater forested wetland, a salt-impacted degraded ghost forest, and a salt marsh in Winyah Bay, SC, USA. General water quality parameters such as electrical conductivity, dissolved oxygen, temperature and aboveground productivity showed distinct trends along the freshwater forested wetland → degraded ghost forest → salt marsh transect, whereas there were no obvious trends in soil biogeochemical parameters. Concentrations of dissolved organic carbon (DOC) in the degraded ghost forest were generally similar to the freshwater forested wetland, but on average were higher than those in the salt marsh. More labile molecular features observed through Fourier transform ion cyclotron resonance mass spectrometry indicated an increase in the DOC biodegradability along the forest-to-marsh transect. Greater DOC biodegradability in the degraded ghost forest was observed and confirmed through its generation of the highest average electrical currents from sediment microbial fuel cells. The lowest CH<sub>4</sub> and CO<sub>2</sub> fluxes, but the highest degradable DOC, were observed in the degraded ghost forest, suggesting that lateral C export is important in this wetland. Moreover, the degraded ghost forest was dominated by a unique microbial community, including high abundance of Woesearchaeia, which enables carbon metabolism via symbiotic and/or fermentation-based lifestyles. Our study illustrates a ghost forest with very different characteristics compared to its parental freshwater forested wetland and its transitioned salt marsh. Data obtained from the two endmember ecosystems along the salinity gradient transect were not useful in predicting the unique biogeochemical processes in the degraded ghost forest.</p></div>\",\"PeriodicalId\":94356,\"journal\":{\"name\":\"Soil & Environmental Health\",\"volume\":\"1 1\",\"pages\":\"Article 100005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Environmental Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949919423000055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Environmental Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949919423000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

海平面上升导致的海水入侵在美国东南部低洼沿海湿地沿线形成了大面积的幽灵森林,但需要更多的信息来更好地了解其土壤生物地球化学。在这里,我们描述了几个土壤和环境参数,包括树木凋落物、地表和土壤孔隙水质量、温室气体排放和微生物群落,沿着森林到沼泽的样带,包括淡水森林湿地、盐影响退化的幽灵森林和美国南卡罗来纳州Winyah湾的盐沼。电导率、溶解氧、温度、地上生产力等一般水质参数沿淡水森林湿地→退化鬼林→盐沼样带呈现明显变化趋势,土壤生物地球化学参数变化趋势不明显。退化鬼林的溶解有机碳(DOC)浓度与淡水森林湿地基本相似,但平均高于盐沼湿地。傅里叶变换离子回旋共振质谱法观察到的更不稳定的分子特征表明,沿森林-沼泽样带DOC的生物降解性增加。通过沉积物微生物燃料电池产生最高的平均电流,观察到退化的幽灵森林中DOC的生物降解性更高,并证实了这一点。在退化的鬼林中,CH4和CO2通量最低,但可降解DOC最高,表明该湿地的横向碳输出很重要。此外,退化的鬼林由一个独特的微生物群落主导,包括高丰度的Woesearchaeia,它通过共生和/或发酵为基础的生活方式实现碳代谢。我们的研究展示了一个鬼林与其亲本淡水森林湿地和过渡盐沼相比具有非常不同的特征。沿盐度梯度样带的两个端元生态系统数据不能用于预测退化鬼林中独特的生物地球化学过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unique biogeochemical characteristics in coastal ghost forests – The transition from freshwater forested wetland to salt marsh under the influences of sea level rise

Seawater intrusion by rising sea levels has created large areas of ghost forests along low-lying coastal wetlands in the southeastern USA, but more information is needed to better understand its soil biogeochemistry. Here, we characterized several soil and environmental parameters, including tree litterfall, surface and soil porewater quality, emissions of greenhouse gases, and microbial communities along a forest-to-marsh transect, including a freshwater forested wetland, a salt-impacted degraded ghost forest, and a salt marsh in Winyah Bay, SC, USA. General water quality parameters such as electrical conductivity, dissolved oxygen, temperature and aboveground productivity showed distinct trends along the freshwater forested wetland → degraded ghost forest → salt marsh transect, whereas there were no obvious trends in soil biogeochemical parameters. Concentrations of dissolved organic carbon (DOC) in the degraded ghost forest were generally similar to the freshwater forested wetland, but on average were higher than those in the salt marsh. More labile molecular features observed through Fourier transform ion cyclotron resonance mass spectrometry indicated an increase in the DOC biodegradability along the forest-to-marsh transect. Greater DOC biodegradability in the degraded ghost forest was observed and confirmed through its generation of the highest average electrical currents from sediment microbial fuel cells. The lowest CH4 and CO2 fluxes, but the highest degradable DOC, were observed in the degraded ghost forest, suggesting that lateral C export is important in this wetland. Moreover, the degraded ghost forest was dominated by a unique microbial community, including high abundance of Woesearchaeia, which enables carbon metabolism via symbiotic and/or fermentation-based lifestyles. Our study illustrates a ghost forest with very different characteristics compared to its parental freshwater forested wetland and its transitioned salt marsh. Data obtained from the two endmember ecosystems along the salinity gradient transect were not useful in predicting the unique biogeochemical processes in the degraded ghost forest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Germanium in the environment: Current knowledge and gap identification Risk assessment based on Cr, Mn, Co, Ni, Cu, Zn, Ba, Pb, and Sc contents in soils and blood Pb levels in children: Seasonable variations and Monte Carlo simulations Modelling sorption and dissipation kinetics of ciprofloxacin and enrofloxacin antibiotics in New Zealand pastoral soils Advances in bioremediation strategies for PFAS-contaminated water and soil Zinc and cadmium release from soil aggregate of different size fractions during repeated phytoextraction with Sedum plumbizincicola: Insight from stable isotope analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1