中国市场富硒稻米的硒含量、形态和生物可及性

Jing-Yu Zeng , Dong-Xing Guan , Zhi-Hua Dai , Jia-Yi Chen , Wen-Jie Dong , Song Ding , Lena Q. Ma
{"title":"中国市场富硒稻米的硒含量、形态和生物可及性","authors":"Jing-Yu Zeng ,&nbsp;Dong-Xing Guan ,&nbsp;Zhi-Hua Dai ,&nbsp;Jia-Yi Chen ,&nbsp;Wen-Jie Dong ,&nbsp;Song Ding ,&nbsp;Lena Q. Ma","doi":"10.1016/j.seh.2023.100037","DOIUrl":null,"url":null,"abstract":"<div><p>Diet intake accounts for &gt;90% of selenium (Se) exposure in humans, with rice being the main source of Se intake for &gt;60% of the Chinese population. In this study, 48 rice grain samples labeled Se-enriched were obtained from 22 major rice producing areas in China through online sources. Their total Se contents, Se speciation, and Se bioaccessibility were evaluated to provide a holistic view of Se-enriched rice in the market. The total Se contents were 0.006–0.951 ​μg ​g<sup>−1</sup> (average 0.249 ​μg ​g<sup>−1</sup>), which showed great regional variations, with 73% of the samples satisfying the Se-enriched standard based on GB/T22499-2008 (0.04–0.30 ​mg ​kg<sup>−1</sup>). Over 80% of Se in the rice samples was organic Se species including selenomethionine, selenocysteine and methylselenocysteine, with selenomethionine being the main Se species, accounting for 61–98%. Based on a modified physiologically-based extraction test (MPBET), the Se bioaccessibility in 33 selected samples was 8.05–49.6% (28.6%) in the gastric phase and 18.1–117% (82.5%) in the intestinal phase. Further, Se bioaccessibility was positively correlated with organic Se (r ​= ​0.89–0.93), but not with inorganic Se (selenite and selenate), suggesting that Se bioaccessibility depended on organic Se in these rice grains. The data call for re-evaluation of Se-enriched rice in the market. Further, the potential risk of long-term consumption of Se-enriched rice in the market towards human health should be studied.</p></div>","PeriodicalId":94356,"journal":{"name":"Soil & Environmental Health","volume":"1 3","pages":"Article 100037"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selenium contents, speciation and bioaccessibility of Se-enriched rice grains from Chinese markets\",\"authors\":\"Jing-Yu Zeng ,&nbsp;Dong-Xing Guan ,&nbsp;Zhi-Hua Dai ,&nbsp;Jia-Yi Chen ,&nbsp;Wen-Jie Dong ,&nbsp;Song Ding ,&nbsp;Lena Q. Ma\",\"doi\":\"10.1016/j.seh.2023.100037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diet intake accounts for &gt;90% of selenium (Se) exposure in humans, with rice being the main source of Se intake for &gt;60% of the Chinese population. In this study, 48 rice grain samples labeled Se-enriched were obtained from 22 major rice producing areas in China through online sources. Their total Se contents, Se speciation, and Se bioaccessibility were evaluated to provide a holistic view of Se-enriched rice in the market. The total Se contents were 0.006–0.951 ​μg ​g<sup>−1</sup> (average 0.249 ​μg ​g<sup>−1</sup>), which showed great regional variations, with 73% of the samples satisfying the Se-enriched standard based on GB/T22499-2008 (0.04–0.30 ​mg ​kg<sup>−1</sup>). Over 80% of Se in the rice samples was organic Se species including selenomethionine, selenocysteine and methylselenocysteine, with selenomethionine being the main Se species, accounting for 61–98%. Based on a modified physiologically-based extraction test (MPBET), the Se bioaccessibility in 33 selected samples was 8.05–49.6% (28.6%) in the gastric phase and 18.1–117% (82.5%) in the intestinal phase. Further, Se bioaccessibility was positively correlated with organic Se (r ​= ​0.89–0.93), but not with inorganic Se (selenite and selenate), suggesting that Se bioaccessibility depended on organic Se in these rice grains. The data call for re-evaluation of Se-enriched rice in the market. Further, the potential risk of long-term consumption of Se-enriched rice in the market towards human health should be studied.</p></div>\",\"PeriodicalId\":94356,\"journal\":{\"name\":\"Soil & Environmental Health\",\"volume\":\"1 3\",\"pages\":\"Article 100037\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Environmental Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949919423000377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Environmental Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949919423000377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

饮食摄入占>;人类90%的硒(Se)暴露,其中大米是>;占中国人口的60%。在本研究中,通过在线来源从中国22个主要水稻产区获得了48个标记为富硒的稻米样品。对其总硒含量、硒形态和硒的生物可及性进行了评估,以全面了解市场上的富硒水稻。总硒含量为0.006–0.951​μg​g−1(平均0.249​μg​g−1),区域差异较大,73%的样品符合GB/T22499-2008的富硒标准(0.04–0.30​毫克​kg−1)。水稻样品中80%以上的硒是有机硒,包括硒代蛋氨酸、硒代半胱氨酸和甲基硒代半胱氨酸,其中硒代蛋氨酸是主要的硒种,占61~98%。基于改良的基于生理学的提取试验(MPBET),33个选定样品中硒的生物可及性在胃期为8.05–49.6%(28.6%),在肠期为18.1–117%(82.5%)。硒的生物可及性与有机硒呈正相关(r​=​0.89–0.93),但与无机硒(亚硒酸盐和硒酸盐)无关,表明硒的生物可及性取决于这些稻米中的有机硒。这些数据要求对市场上的富硒大米进行重新评估。此外,应研究市场上长期食用富硒大米对人类健康的潜在风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selenium contents, speciation and bioaccessibility of Se-enriched rice grains from Chinese markets

Diet intake accounts for >90% of selenium (Se) exposure in humans, with rice being the main source of Se intake for >60% of the Chinese population. In this study, 48 rice grain samples labeled Se-enriched were obtained from 22 major rice producing areas in China through online sources. Their total Se contents, Se speciation, and Se bioaccessibility were evaluated to provide a holistic view of Se-enriched rice in the market. The total Se contents were 0.006–0.951 ​μg ​g−1 (average 0.249 ​μg ​g−1), which showed great regional variations, with 73% of the samples satisfying the Se-enriched standard based on GB/T22499-2008 (0.04–0.30 ​mg ​kg−1). Over 80% of Se in the rice samples was organic Se species including selenomethionine, selenocysteine and methylselenocysteine, with selenomethionine being the main Se species, accounting for 61–98%. Based on a modified physiologically-based extraction test (MPBET), the Se bioaccessibility in 33 selected samples was 8.05–49.6% (28.6%) in the gastric phase and 18.1–117% (82.5%) in the intestinal phase. Further, Se bioaccessibility was positively correlated with organic Se (r ​= ​0.89–0.93), but not with inorganic Se (selenite and selenate), suggesting that Se bioaccessibility depended on organic Se in these rice grains. The data call for re-evaluation of Se-enriched rice in the market. Further, the potential risk of long-term consumption of Se-enriched rice in the market towards human health should be studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Germanium in the environment: Current knowledge and gap identification Risk assessment based on Cr, Mn, Co, Ni, Cu, Zn, Ba, Pb, and Sc contents in soils and blood Pb levels in children: Seasonable variations and Monte Carlo simulations Modelling sorption and dissipation kinetics of ciprofloxacin and enrofloxacin antibiotics in New Zealand pastoral soils Advances in bioremediation strategies for PFAS-contaminated water and soil Zinc and cadmium release from soil aggregate of different size fractions during repeated phytoextraction with Sedum plumbizincicola: Insight from stable isotope analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1