Evelyn C. Antunes , Felipe Oliveira , Hardy Temmink , Boelo Schuur
{"title":"离子液体萃取技术分离多糖和蛋白质","authors":"Evelyn C. Antunes , Felipe Oliveira , Hardy Temmink , Boelo Schuur","doi":"10.1016/j.jil.2023.100058","DOIUrl":null,"url":null,"abstract":"<div><p>Biopolymers are natural macromolecules obtained from animal, plant and microbial sources, with the potential to be used in a wide range of applications. A key process step, which is still underdeveloped, is the downstream processing. In this work, water immiscible and water miscible ionic liquids (ILs) were investigated regarding their ability to fractionate a mixture of polysaccharide and proteins. Alginate and bovine serum albumin (BSA) were used as model compounds to mimic natural polymer crude extract. Phosphonium ILs composed of different anions (bromide, dicyanamide and phosphinate) were used as water immiscible ILs while imidazolium ILs, combined with phosphate salts to form biphasic system, were selected as water miscible ILs. In water immiscible IL systems, the partitioning behavior of biopolymers depended on IL's anions and there was formation of insoluble precipitate. The insolubility of precipitate in diverse aqueous and organic solvents hindered the processibility of water immiscible phosphonium IL for fractionation of biopolymers. The partitioning of biopolymers in water miscible ILs systems also depended on the IL's anion, as well the concentration of IL. Separation of alginate (yield = 90% and purity = 99%) from BSA (yield = 89% and purity = 99%) was best achieved by the [C<sub>4</sub>mim]Cl-based extraction system. After fractionation, regeneration of IL and salt used was carried out by ultrafiltration, with recovery yields up to 100%. The high extraction yields and recyclability of phase-forming compounds confirm the potential of water miscible ILs systems to fractionate polysaccharide and protein.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"3 2","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of polysaccharide and protein by ionic liquid-based extraction techniques\",\"authors\":\"Evelyn C. Antunes , Felipe Oliveira , Hardy Temmink , Boelo Schuur\",\"doi\":\"10.1016/j.jil.2023.100058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biopolymers are natural macromolecules obtained from animal, plant and microbial sources, with the potential to be used in a wide range of applications. A key process step, which is still underdeveloped, is the downstream processing. In this work, water immiscible and water miscible ionic liquids (ILs) were investigated regarding their ability to fractionate a mixture of polysaccharide and proteins. Alginate and bovine serum albumin (BSA) were used as model compounds to mimic natural polymer crude extract. Phosphonium ILs composed of different anions (bromide, dicyanamide and phosphinate) were used as water immiscible ILs while imidazolium ILs, combined with phosphate salts to form biphasic system, were selected as water miscible ILs. In water immiscible IL systems, the partitioning behavior of biopolymers depended on IL's anions and there was formation of insoluble precipitate. The insolubility of precipitate in diverse aqueous and organic solvents hindered the processibility of water immiscible phosphonium IL for fractionation of biopolymers. The partitioning of biopolymers in water miscible ILs systems also depended on the IL's anion, as well the concentration of IL. Separation of alginate (yield = 90% and purity = 99%) from BSA (yield = 89% and purity = 99%) was best achieved by the [C<sub>4</sub>mim]Cl-based extraction system. After fractionation, regeneration of IL and salt used was carried out by ultrafiltration, with recovery yields up to 100%. The high extraction yields and recyclability of phase-forming compounds confirm the potential of water miscible ILs systems to fractionate polysaccharide and protein.</p></div>\",\"PeriodicalId\":100794,\"journal\":{\"name\":\"Journal of Ionic Liquids\",\"volume\":\"3 2\",\"pages\":\"Article 100058\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ionic Liquids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772422023000101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422023000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Separation of polysaccharide and protein by ionic liquid-based extraction techniques
Biopolymers are natural macromolecules obtained from animal, plant and microbial sources, with the potential to be used in a wide range of applications. A key process step, which is still underdeveloped, is the downstream processing. In this work, water immiscible and water miscible ionic liquids (ILs) were investigated regarding their ability to fractionate a mixture of polysaccharide and proteins. Alginate and bovine serum albumin (BSA) were used as model compounds to mimic natural polymer crude extract. Phosphonium ILs composed of different anions (bromide, dicyanamide and phosphinate) were used as water immiscible ILs while imidazolium ILs, combined with phosphate salts to form biphasic system, were selected as water miscible ILs. In water immiscible IL systems, the partitioning behavior of biopolymers depended on IL's anions and there was formation of insoluble precipitate. The insolubility of precipitate in diverse aqueous and organic solvents hindered the processibility of water immiscible phosphonium IL for fractionation of biopolymers. The partitioning of biopolymers in water miscible ILs systems also depended on the IL's anion, as well the concentration of IL. Separation of alginate (yield = 90% and purity = 99%) from BSA (yield = 89% and purity = 99%) was best achieved by the [C4mim]Cl-based extraction system. After fractionation, regeneration of IL and salt used was carried out by ultrafiltration, with recovery yields up to 100%. The high extraction yields and recyclability of phase-forming compounds confirm the potential of water miscible ILs systems to fractionate polysaccharide and protein.