Khan Rajib Hossain , Pan Jiang , Xinle Yao , Xingxing Yang , Danli Hu , Xiaolong Wang
{"title":"用于3D打印的离子液体:制造,性能,应用","authors":"Khan Rajib Hossain , Pan Jiang , Xinle Yao , Xingxing Yang , Danli Hu , Xiaolong Wang","doi":"10.1016/j.jil.2023.100066","DOIUrl":null,"url":null,"abstract":"<div><p>Ionic liquids (ILs) are materials with fascinating preorganized and programmable solvent structures and distinctive physicochemical features. ILs have recently been used to create polymeric materials with customized sizes, dimensionalities, morphologies, and functions that are challenging to obtain when using common organic solvents. ILs are individual macromolecules that contain cationic and anionic sites either adjacent to or inside the polymer backbones. The device manufacturing technology using 3D printing can realize the on-demand manufacturing of devices and the design of devices from small to large. Arbitrary devices can also be manufactured by adding various functional substances to ink raw materials—one of the most widely used technologies in additives, energy storage, photoactive, biomedical, sensitive innovative materials, emerging areas, etc. This study provides a literature analysis of recent work on three-dimensional (3D) printing technology over the past few years, emphasizing the distinctive properties of ILs in new 3D printing applications. Finally, we briefly summarize several growth prospects that might result in new developments in this fascinating research area.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"3 2","pages":"Article 100066"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic liquids for 3D printing: Fabrication, properties, applications\",\"authors\":\"Khan Rajib Hossain , Pan Jiang , Xinle Yao , Xingxing Yang , Danli Hu , Xiaolong Wang\",\"doi\":\"10.1016/j.jil.2023.100066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ionic liquids (ILs) are materials with fascinating preorganized and programmable solvent structures and distinctive physicochemical features. ILs have recently been used to create polymeric materials with customized sizes, dimensionalities, morphologies, and functions that are challenging to obtain when using common organic solvents. ILs are individual macromolecules that contain cationic and anionic sites either adjacent to or inside the polymer backbones. The device manufacturing technology using 3D printing can realize the on-demand manufacturing of devices and the design of devices from small to large. Arbitrary devices can also be manufactured by adding various functional substances to ink raw materials—one of the most widely used technologies in additives, energy storage, photoactive, biomedical, sensitive innovative materials, emerging areas, etc. This study provides a literature analysis of recent work on three-dimensional (3D) printing technology over the past few years, emphasizing the distinctive properties of ILs in new 3D printing applications. Finally, we briefly summarize several growth prospects that might result in new developments in this fascinating research area.</p></div>\",\"PeriodicalId\":100794,\"journal\":{\"name\":\"Journal of Ionic Liquids\",\"volume\":\"3 2\",\"pages\":\"Article 100066\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ionic Liquids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772422023000186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422023000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ionic liquids for 3D printing: Fabrication, properties, applications
Ionic liquids (ILs) are materials with fascinating preorganized and programmable solvent structures and distinctive physicochemical features. ILs have recently been used to create polymeric materials with customized sizes, dimensionalities, morphologies, and functions that are challenging to obtain when using common organic solvents. ILs are individual macromolecules that contain cationic and anionic sites either adjacent to or inside the polymer backbones. The device manufacturing technology using 3D printing can realize the on-demand manufacturing of devices and the design of devices from small to large. Arbitrary devices can also be manufactured by adding various functional substances to ink raw materials—one of the most widely used technologies in additives, energy storage, photoactive, biomedical, sensitive innovative materials, emerging areas, etc. This study provides a literature analysis of recent work on three-dimensional (3D) printing technology over the past few years, emphasizing the distinctive properties of ILs in new 3D printing applications. Finally, we briefly summarize several growth prospects that might result in new developments in this fascinating research area.