{"title":"基于自旋轨道转矩的范德华体系磁化开关","authors":"Xin Lin , Lijun Zhu","doi":"10.1016/j.mtelec.2023.100037","DOIUrl":null,"url":null,"abstract":"<div><p>Electrical switching of magnetization via spin-orbit torque is of great potential in fast, dense, energy-efficient nonvolatile magnetic memory and logic technologies. Recently, enormous efforts have been stimulated to investigate switching of perpendicular magnetization in van der Waals systems that have unique, strong tunability and spin-orbit coupling effect compared to conventional metals. In this review, we first give a brief, generalized introduction to the spin-orbit torque and van der Waals materials. We will then discuss the recent advances in magnetization switching by the spin current generated from van der Waals materials and summary the progress in the switching of van der Waals magnetization by the spin-orbit torque.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"4 ","pages":"Article 100037"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Magnetization switching in van der Waals systems by spin-orbit torque\",\"authors\":\"Xin Lin , Lijun Zhu\",\"doi\":\"10.1016/j.mtelec.2023.100037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrical switching of magnetization via spin-orbit torque is of great potential in fast, dense, energy-efficient nonvolatile magnetic memory and logic technologies. Recently, enormous efforts have been stimulated to investigate switching of perpendicular magnetization in van der Waals systems that have unique, strong tunability and spin-orbit coupling effect compared to conventional metals. In this review, we first give a brief, generalized introduction to the spin-orbit torque and van der Waals materials. We will then discuss the recent advances in magnetization switching by the spin current generated from van der Waals materials and summary the progress in the switching of van der Waals magnetization by the spin-orbit torque.</p></div>\",\"PeriodicalId\":100893,\"journal\":{\"name\":\"Materials Today Electronics\",\"volume\":\"4 \",\"pages\":\"Article 100037\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277294942300013X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277294942300013X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetization switching in van der Waals systems by spin-orbit torque
Electrical switching of magnetization via spin-orbit torque is of great potential in fast, dense, energy-efficient nonvolatile magnetic memory and logic technologies. Recently, enormous efforts have been stimulated to investigate switching of perpendicular magnetization in van der Waals systems that have unique, strong tunability and spin-orbit coupling effect compared to conventional metals. In this review, we first give a brief, generalized introduction to the spin-orbit torque and van der Waals materials. We will then discuss the recent advances in magnetization switching by the spin current generated from van der Waals materials and summary the progress in the switching of van der Waals magnetization by the spin-orbit torque.