社交搜索:检索在线社交平台上的信息-一项调查

Q1 Social Sciences Online Social Networks and Media Pub Date : 2023-07-01 DOI:10.1016/j.osnem.2023.100254
Maddalena Amendola , Andrea Passarella , Raffaele Perego
{"title":"社交搜索:检索在线社交平台上的信息-一项调查","authors":"Maddalena Amendola ,&nbsp;Andrea Passarella ,&nbsp;Raffaele Perego","doi":"10.1016/j.osnem.2023.100254","DOIUrl":null,"url":null,"abstract":"<div><p><em>Social Search</em> research studies methodologies exploiting social information to better satisfy user information needs in Online Social Media while simplifying the search effort and consequently reducing the time spent and the computational resources utilized. Starting from previous studies, in this work, we analyze the current state of the art of the Social Search area, proposing a new taxonomy and highlighting current limitations and open research directions. We divide the Social Search area into three subcategories, where the social aspect plays a pivotal role: <em>Social Question&amp;Answering</em>, <em>Social Content Search</em>, and <em>Social Collaborative Search</em>. For each subcategory, we present the key concepts and selected representative approaches in the literature in greater detail. We found that, up to now, a large body of studies model users’ preferences and their relations by simply combining social features made available by social platforms. It paves the way for significant research to exploit more structured information about users’ social profiles and behaviours (as they can be inferred from data available on social platforms) to optimize their information needs further.</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social search: Retrieving information in Online Social platforms – A survey\",\"authors\":\"Maddalena Amendola ,&nbsp;Andrea Passarella ,&nbsp;Raffaele Perego\",\"doi\":\"10.1016/j.osnem.2023.100254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Social Search</em> research studies methodologies exploiting social information to better satisfy user information needs in Online Social Media while simplifying the search effort and consequently reducing the time spent and the computational resources utilized. Starting from previous studies, in this work, we analyze the current state of the art of the Social Search area, proposing a new taxonomy and highlighting current limitations and open research directions. We divide the Social Search area into three subcategories, where the social aspect plays a pivotal role: <em>Social Question&amp;Answering</em>, <em>Social Content Search</em>, and <em>Social Collaborative Search</em>. For each subcategory, we present the key concepts and selected representative approaches in the literature in greater detail. We found that, up to now, a large body of studies model users’ preferences and their relations by simply combining social features made available by social platforms. It paves the way for significant research to exploit more structured information about users’ social profiles and behaviours (as they can be inferred from data available on social platforms) to optimize their information needs further.</p></div>\",\"PeriodicalId\":52228,\"journal\":{\"name\":\"Online Social Networks and Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online Social Networks and Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468696423000137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696423000137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

社交搜索研究研究利用社交信息更好地满足在线社交媒体中用户信息需求的方法,同时简化搜索工作,从而减少花费的时间和使用的计算资源。在这项工作中,我们从以往的研究出发,分析了社会搜索领域的现状,提出了一个新的分类法,并强调了当前的局限性和开放的研究方向。我们将社会搜索领域分为三个子类别,其中社会方面起着关键作用:社会问题;回答、社交内容搜索和社交协作搜索。对于每个子类别,我们更详细地介绍了文献中的关键概念和选定的代表性方法。我们发现,到目前为止,大量研究通过简单地结合社交平台提供的社交功能来模拟用户的偏好及其关系。它为重要的研究铺平了道路,利用关于用户社交档案和行为的更结构化的信息(可以从社交平台上的数据中推断出)来进一步优化他们的信息需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Social search: Retrieving information in Online Social platforms – A survey

Social Search research studies methodologies exploiting social information to better satisfy user information needs in Online Social Media while simplifying the search effort and consequently reducing the time spent and the computational resources utilized. Starting from previous studies, in this work, we analyze the current state of the art of the Social Search area, proposing a new taxonomy and highlighting current limitations and open research directions. We divide the Social Search area into three subcategories, where the social aspect plays a pivotal role: Social Question&Answering, Social Content Search, and Social Collaborative Search. For each subcategory, we present the key concepts and selected representative approaches in the literature in greater detail. We found that, up to now, a large body of studies model users’ preferences and their relations by simply combining social features made available by social platforms. It paves the way for significant research to exploit more structured information about users’ social profiles and behaviours (as they can be inferred from data available on social platforms) to optimize their information needs further.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
期刊最新文献
How does user-generated content on Social Media affect stock predictions? A case study on GameStop Measuring centralization of online platforms through size and interconnection of communities Crowdsourcing the Mitigation of disinformation and misinformation: The case of spontaneous community-based moderation on Reddit GASCOM: Graph-based Attentive Semantic Context Modeling for Online Conversation Understanding The influence of coordinated behavior on toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1