基于结构的加权奇异值分解的随机噪声衰减

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Studia Geophysica et Geodaetica Pub Date : 2019-10-25 DOI:10.1007/s11200-019-0723-8
Yankai Xu, Siyuan Cao, Xiao Pan
{"title":"基于结构的加权奇异值分解的随机噪声衰减","authors":"Yankai Xu,&nbsp;Siyuan Cao,&nbsp;Xiao Pan","doi":"10.1007/s11200-019-0723-8","DOIUrl":null,"url":null,"abstract":"<p>Singular value decomposition (SVD) is a useful method for random noise suppression in seismic data processing. A structure-oriented SVD (SOSVD) approach which incorporates structure prediction to the SVD filter is effcient in attenuating noise except distorting seismic events at faults and crossing points. A modified SOSVD approach using a weighted stack, called structure-oriented weighted SVD (SOWSVD), is proposed. In this approach, the SVD filter is used to attenuate noise for prediction traces of a primitive trace which are produced via the plane-wave prediction. A weighting function related to local similarity and distance between each prediction trace and the primitive trace is applied to the denoised prediction traces stacking. Both synthetic and field data examples suggest the SOWSVD performs better than the SOSVD in both suppressing random noise and preserving the information of the discontinuities for seismic data with crossing events and faults.</p>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"63 4","pages":"554 - 568"},"PeriodicalIF":0.5000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11200-019-0723-8","citationCount":"3","resultStr":"{\"title\":\"Random noise attenuation using a structure-oriented weighted singular value decomposition\",\"authors\":\"Yankai Xu,&nbsp;Siyuan Cao,&nbsp;Xiao Pan\",\"doi\":\"10.1007/s11200-019-0723-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Singular value decomposition (SVD) is a useful method for random noise suppression in seismic data processing. A structure-oriented SVD (SOSVD) approach which incorporates structure prediction to the SVD filter is effcient in attenuating noise except distorting seismic events at faults and crossing points. A modified SOSVD approach using a weighted stack, called structure-oriented weighted SVD (SOWSVD), is proposed. In this approach, the SVD filter is used to attenuate noise for prediction traces of a primitive trace which are produced via the plane-wave prediction. A weighting function related to local similarity and distance between each prediction trace and the primitive trace is applied to the denoised prediction traces stacking. Both synthetic and field data examples suggest the SOWSVD performs better than the SOSVD in both suppressing random noise and preserving the information of the discontinuities for seismic data with crossing events and faults.</p>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"63 4\",\"pages\":\"554 - 568\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11200-019-0723-8\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-019-0723-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-019-0723-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

奇异值分解(SVD)是地震资料处理中抑制随机噪声的有效方法。基于结构的奇异值分解(SOSVD)方法将结构预测与奇异值分解(SVD)滤波器相结合,除了会使断层和交叉点处的地震事件失真外,还能有效地抑制噪声。提出了一种基于加权堆栈的改进的SOSVD方法,称为面向结构的加权SVD (SOWSVD)。该方法利用奇异值分解滤波器对平面波预测产生的原始迹线的预测迹进行噪声衰减。在去噪后的预测迹叠加中,应用与预测迹与原始迹之间的局部相似度和距离相关的加权函数。综合和现场数据实例表明,对于具有交叉事件和断层的地震数据,SOWSVD在抑制随机噪声和保留不连续信息方面都优于SOWSVD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random noise attenuation using a structure-oriented weighted singular value decomposition

Singular value decomposition (SVD) is a useful method for random noise suppression in seismic data processing. A structure-oriented SVD (SOSVD) approach which incorporates structure prediction to the SVD filter is effcient in attenuating noise except distorting seismic events at faults and crossing points. A modified SOSVD approach using a weighted stack, called structure-oriented weighted SVD (SOWSVD), is proposed. In this approach, the SVD filter is used to attenuate noise for prediction traces of a primitive trace which are produced via the plane-wave prediction. A weighting function related to local similarity and distance between each prediction trace and the primitive trace is applied to the denoised prediction traces stacking. Both synthetic and field data examples suggest the SOWSVD performs better than the SOSVD in both suppressing random noise and preserving the information of the discontinuities for seismic data with crossing events and faults.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Geophysica et Geodaetica
Studia Geophysica et Geodaetica 地学-地球化学与地球物理
CiteScore
1.90
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.
期刊最新文献
Present-day crustal deformation based on an interpolated GPS velocity field in the collision zone of the Arabia-Eurasia tectonic plates Effect of the 2021 Cumbre Vieja eruption on precipitable water vapor and atmospheric particles analysed using GNSS and remote sensing Geophysical structure of a local area in the lunar Oceanus Procellarum region investigated using the gravity gradient method Estimation of the minimal detectable horizontal acceleration of GNSS CORS The area of rhumb polygons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1