迈向6G超连接:愿景、挑战和关键使能技术

IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Communications and Networks Pub Date : 2023-03-25 DOI:10.23919/JCN.2023.000006
Howon Lee;Byungju Lee;Heecheol Yang;Junghyun Kim;Seungnyun Kim;Wonjae Shin;Byonghyo Shim;H. Vincent Poor
{"title":"迈向6G超连接:愿景、挑战和关键使能技术","authors":"Howon Lee;Byungju Lee;Heecheol Yang;Junghyun Kim;Seungnyun Kim;Wonjae Shin;Byonghyo Shim;H. Vincent Poor","doi":"10.23919/JCN.2023.000006","DOIUrl":null,"url":null,"abstract":"Technology forecasts anticipate a new era in which massive numbers of humans, machines, and things are connected to wireless networks to sense, process, act, and communicate with the surrounding environment in a real-time manner. To make the visions come true, the sixth generation (6G) wireless networks should be hyper-connected, implying that there are no constraints on the data rate, coverage, and computing. In this article, we first identify the main challenges for 6G hyperconnectivity, including terabits-per-second (Tbps) data rates for immersive user experiences, zero coverage-hole networks, and pervasive computing for connected intelligence. To overcome these challenges, we highlight key enabling technologies for 6G such as distributed and intelligence-aware cell-free massive multi-input multi-output (MIMO) networks, boundless and fully integrated terrestrial and non-terrestrial networks, and communication-aware distributed computing for computationintensive applications. We further illustrate and discuss the hyper-connected 6G network architecture along with open issues and future research directions.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5449605/10190217/10136521.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards 6G hyper-connectivity: Vision, challenges, and key enabling technologies\",\"authors\":\"Howon Lee;Byungju Lee;Heecheol Yang;Junghyun Kim;Seungnyun Kim;Wonjae Shin;Byonghyo Shim;H. Vincent Poor\",\"doi\":\"10.23919/JCN.2023.000006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology forecasts anticipate a new era in which massive numbers of humans, machines, and things are connected to wireless networks to sense, process, act, and communicate with the surrounding environment in a real-time manner. To make the visions come true, the sixth generation (6G) wireless networks should be hyper-connected, implying that there are no constraints on the data rate, coverage, and computing. In this article, we first identify the main challenges for 6G hyperconnectivity, including terabits-per-second (Tbps) data rates for immersive user experiences, zero coverage-hole networks, and pervasive computing for connected intelligence. To overcome these challenges, we highlight key enabling technologies for 6G such as distributed and intelligence-aware cell-free massive multi-input multi-output (MIMO) networks, boundless and fully integrated terrestrial and non-terrestrial networks, and communication-aware distributed computing for computationintensive applications. We further illustrate and discuss the hyper-connected 6G network architecture along with open issues and future research directions.\",\"PeriodicalId\":54864,\"journal\":{\"name\":\"Journal of Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/5449605/10190217/10136521.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10136521/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10136521/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

技术预测预示着一个新时代,在这个时代,大量的人、机器和事物连接到无线网络,以实时方式感知、处理、行动并与周围环境通信。为了实现这些愿景,第六代(6G)无线网络应该是超连接的,这意味着在数据速率、覆盖率和计算方面没有限制。在本文中,我们首先确定了6G超连通性的主要挑战,包括用于沉浸式用户体验的每秒万亿比特(Tbps)数据速率、零覆盖漏洞网络以及用于连接智能的普适计算。为了克服这些挑战,我们强调了6G的关键使能技术,如分布式和智能感知的无蜂窝大规模多输入多输出(MIMO)网络、无边界和完全集成的地面和非地面网络,以及用于计算密集型应用的通信感知分布式计算。我们进一步阐述和讨论了超连接6G网络架构,以及悬而未决的问题和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards 6G hyper-connectivity: Vision, challenges, and key enabling technologies
Technology forecasts anticipate a new era in which massive numbers of humans, machines, and things are connected to wireless networks to sense, process, act, and communicate with the surrounding environment in a real-time manner. To make the visions come true, the sixth generation (6G) wireless networks should be hyper-connected, implying that there are no constraints on the data rate, coverage, and computing. In this article, we first identify the main challenges for 6G hyperconnectivity, including terabits-per-second (Tbps) data rates for immersive user experiences, zero coverage-hole networks, and pervasive computing for connected intelligence. To overcome these challenges, we highlight key enabling technologies for 6G such as distributed and intelligence-aware cell-free massive multi-input multi-output (MIMO) networks, boundless and fully integrated terrestrial and non-terrestrial networks, and communication-aware distributed computing for computationintensive applications. We further illustrate and discuss the hyper-connected 6G network architecture along with open issues and future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
5.60%
发文量
66
审稿时长
14.4 months
期刊介绍: The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.
期刊最新文献
Advertisement Editorial board Front cover Back cover copyright transferform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1