基于增强模板更新和重检鉴别器的视觉跟踪

Shan Zhong;Yuya Sun;Shengrong Gong;Lifan Zhou;Gengsheng Xie
{"title":"基于增强模板更新和重检鉴别器的视觉跟踪","authors":"Shan Zhong;Yuya Sun;Shengrong Gong;Lifan Zhou;Gengsheng Xie","doi":"10.1109/JMASS.2022.3228339","DOIUrl":null,"url":null,"abstract":"Though many deep-learning-based trackers for visual object tracking have achieved state-of-the-art performance on multiple benchmarks, they still suffer from significant variations in object appearance and loss of the object. To capture variations of the object appearance, this article proposes a template matching network for object tracking, where deep reinforcement learning is introduced to learn how to update the template. Specifically, the template updating problem is modeled to a Markov decision process where the proximal policy optimization (PPO) algorithm is applied to learn the policy of updating the current template. The resultant template updating policy not only considers the variations of the object but also estimates the influence of current updating for the following frames. To further handle the sudden loss of the object, a two-class redetection discriminator is proposed to conclude whether the object is lost or not. If the object is believed to be lost, a global redetection will be launched to locate the target. Experimentally, the proposed method is compared with some representative methods on dataset OTB2015, and experimental results show that our method can get competitive performance on both accuracy and frame speed.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"4 1","pages":"70-75"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Tracking With Reinforced Template Updating and Redetection Discriminator\",\"authors\":\"Shan Zhong;Yuya Sun;Shengrong Gong;Lifan Zhou;Gengsheng Xie\",\"doi\":\"10.1109/JMASS.2022.3228339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though many deep-learning-based trackers for visual object tracking have achieved state-of-the-art performance on multiple benchmarks, they still suffer from significant variations in object appearance and loss of the object. To capture variations of the object appearance, this article proposes a template matching network for object tracking, where deep reinforcement learning is introduced to learn how to update the template. Specifically, the template updating problem is modeled to a Markov decision process where the proximal policy optimization (PPO) algorithm is applied to learn the policy of updating the current template. The resultant template updating policy not only considers the variations of the object but also estimates the influence of current updating for the following frames. To further handle the sudden loss of the object, a two-class redetection discriminator is proposed to conclude whether the object is lost or not. If the object is believed to be lost, a global redetection will be launched to locate the target. Experimentally, the proposed method is compared with some representative methods on dataset OTB2015, and experimental results show that our method can get competitive performance on both accuracy and frame speed.\",\"PeriodicalId\":100624,\"journal\":{\"name\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"volume\":\"4 1\",\"pages\":\"70-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9995721/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9995721/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管许多用于视觉对象跟踪的基于深度学习的跟踪器在多个基准上实现了最先进的性能,但它们仍然存在对象外观和对象丢失的显著变化。为了捕捉对象外观的变化,本文提出了一种用于对象跟踪的模板匹配网络,其中引入了深度强化学习来学习如何更新模板。具体地,将模板更新问题建模为马尔可夫决策过程,其中应用近端策略优化(PPO)算法来学习更新当前模板的策略。由此产生的模板更新策略不仅考虑了对象的变化,而且估计了当前更新对后续帧的影响。为了进一步处理对象的突然丢失,提出了一个两类重新检测鉴别器来判断对象是否丢失。如果物体被认为丢失了,将启动全局重新检测来定位目标。实验上,将该方法与OTB2015数据集上的一些有代表性的方法进行了比较,实验结果表明,该方法在精度和帧速方面都具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Tracking With Reinforced Template Updating and Redetection Discriminator
Though many deep-learning-based trackers for visual object tracking have achieved state-of-the-art performance on multiple benchmarks, they still suffer from significant variations in object appearance and loss of the object. To capture variations of the object appearance, this article proposes a template matching network for object tracking, where deep reinforcement learning is introduced to learn how to update the template. Specifically, the template updating problem is modeled to a Markov decision process where the proximal policy optimization (PPO) algorithm is applied to learn the policy of updating the current template. The resultant template updating policy not only considers the variations of the object but also estimates the influence of current updating for the following frames. To further handle the sudden loss of the object, a two-class redetection discriminator is proposed to conclude whether the object is lost or not. If the object is believed to be lost, a global redetection will be launched to locate the target. Experimentally, the proposed method is compared with some representative methods on dataset OTB2015, and experimental results show that our method can get competitive performance on both accuracy and frame speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1