面向立方体卫星开发的星载计算机与测试平台

Koffi V. C. K. de Souza;Yassine Bouslimani;Mohsen Ghribi;Tobie Boutot
{"title":"面向立方体卫星开发的星载计算机与测试平台","authors":"Koffi V. C. K. de Souza;Yassine Bouslimani;Mohsen Ghribi;Tobie Boutot","doi":"10.1109/JMASS.2023.3250581","DOIUrl":null,"url":null,"abstract":"The design and development of a CubeSat testing platform built from scratch is the focus of this work. The investigation was conducted as part of the Canadian CubeSat Project (CCP), an initiative conducted by the Canadian Space Agency (CSA) to support the development of 15 CubeSats across Canada. In this article, a particular emphasis is placed on three key subsystems: 1) an on-board computer (OBC); 2) a global navigation satellite system (GNSS)-based payload; and 3) a communication board, all connected together through a FlatSat board. The mission software running on an STM32-microcontroller (MCU)-based OBC is responsible for managing all CubeSat activities. The OBC was designed to meet a range of requirements, including mechanical, electrical, and thermal requirements. Indeed, due to the intense heat and radiation that the CubeSat will be exposed to in low-Earth orbit (LEO), the CubeSat may experience many difficulties, potentially leading to mission failure. The risk-reduction techniques used in the design of the OBC will be discussed in detail. The tests performed on the developed OBC were successful, including an initial power test and a vacuum test, where the MCU entered low-power mode for a total of 10 s, consuming only 0.0528 W of power.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"4 2","pages":"199-211"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-Board Computer and Testing Platform for CubeSat Development\",\"authors\":\"Koffi V. C. K. de Souza;Yassine Bouslimani;Mohsen Ghribi;Tobie Boutot\",\"doi\":\"10.1109/JMASS.2023.3250581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design and development of a CubeSat testing platform built from scratch is the focus of this work. The investigation was conducted as part of the Canadian CubeSat Project (CCP), an initiative conducted by the Canadian Space Agency (CSA) to support the development of 15 CubeSats across Canada. In this article, a particular emphasis is placed on three key subsystems: 1) an on-board computer (OBC); 2) a global navigation satellite system (GNSS)-based payload; and 3) a communication board, all connected together through a FlatSat board. The mission software running on an STM32-microcontroller (MCU)-based OBC is responsible for managing all CubeSat activities. The OBC was designed to meet a range of requirements, including mechanical, electrical, and thermal requirements. Indeed, due to the intense heat and radiation that the CubeSat will be exposed to in low-Earth orbit (LEO), the CubeSat may experience many difficulties, potentially leading to mission failure. The risk-reduction techniques used in the design of the OBC will be discussed in detail. The tests performed on the developed OBC were successful, including an initial power test and a vacuum test, where the MCU entered low-power mode for a total of 10 s, consuming only 0.0528 W of power.\",\"PeriodicalId\":100624,\"journal\":{\"name\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"volume\":\"4 2\",\"pages\":\"199-211\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10056299/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10056299/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从头开始构建的CubeSat测试平台的设计和开发是本工作的重点。该调查是作为加拿大立方体卫星项目(CCP)的一部分进行的,该项目由加拿大航天局(CSA)发起,旨在支持在加拿大各地开发15个立方体卫星。在本文中,特别强调了三个关键子系统:1)车载计算机(OBC);2) 基于全球导航卫星系统的有效载荷;以及3)通信板,所有这些都通过FlatSat板连接在一起。基于STM32微控制器(MCU)的OBC上运行的任务软件负责管理所有CubeSat活动。OBC旨在满足一系列要求,包括机械、电气和热要求。事实上,由于立方体卫星将在近地轨道(LEO)暴露在高温和辐射下,立方体卫星可能会遇到许多困难,可能导致任务失败。将详细讨论OBC设计中使用的风险降低技术。对开发的OBC进行的测试是成功的,包括初始功率测试和真空测试,其中MCU进入低功率模式总共10 s,仅消耗0.0528 W的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-Board Computer and Testing Platform for CubeSat Development
The design and development of a CubeSat testing platform built from scratch is the focus of this work. The investigation was conducted as part of the Canadian CubeSat Project (CCP), an initiative conducted by the Canadian Space Agency (CSA) to support the development of 15 CubeSats across Canada. In this article, a particular emphasis is placed on three key subsystems: 1) an on-board computer (OBC); 2) a global navigation satellite system (GNSS)-based payload; and 3) a communication board, all connected together through a FlatSat board. The mission software running on an STM32-microcontroller (MCU)-based OBC is responsible for managing all CubeSat activities. The OBC was designed to meet a range of requirements, including mechanical, electrical, and thermal requirements. Indeed, due to the intense heat and radiation that the CubeSat will be exposed to in low-Earth orbit (LEO), the CubeSat may experience many difficulties, potentially leading to mission failure. The risk-reduction techniques used in the design of the OBC will be discussed in detail. The tests performed on the developed OBC were successful, including an initial power test and a vacuum test, where the MCU entered low-power mode for a total of 10 s, consuming only 0.0528 W of power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1