游戏中多智能体系统的数据驱动决策和近最优路径规划

Xindi Wang;Hao Liu;Qing Gao
{"title":"游戏中多智能体系统的数据驱动决策和近最优路径规划","authors":"Xindi Wang;Hao Liu;Qing Gao","doi":"10.1109/JMASS.2023.3292259","DOIUrl":null,"url":null,"abstract":"In this article, the optimal real-time decision making and near-optimal path planning problem for multiagent systems subject to bounded state, collision avoidance, external disturbance, and partially unknown nonlinear dynamics of the multiagent system in complex games, is addressed and applied to the unmanned aerial vehicle. A mean-field decision-making model based on the neighbor information is established to transform the decision-making problem into a Bellman equation solving problem. A data-driven dynamic programming algorithm is proposed to solve the Bellman equation and generate an optimal strategy using the data from the historical database and expert knowledge. The near-optimal path planning problem is formulated with an optimal coordination control problem, and an online integral reinforcement learning algorithm is proposed to iteratively interact with the environment to obtain a near-optimal path. Simulation results are provided to verify the effectiveness of the proposed methods.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"4 3","pages":"320-328"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Decision Making and Near-Optimal Path Planning for Multiagent System in Games\",\"authors\":\"Xindi Wang;Hao Liu;Qing Gao\",\"doi\":\"10.1109/JMASS.2023.3292259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the optimal real-time decision making and near-optimal path planning problem for multiagent systems subject to bounded state, collision avoidance, external disturbance, and partially unknown nonlinear dynamics of the multiagent system in complex games, is addressed and applied to the unmanned aerial vehicle. A mean-field decision-making model based on the neighbor information is established to transform the decision-making problem into a Bellman equation solving problem. A data-driven dynamic programming algorithm is proposed to solve the Bellman equation and generate an optimal strategy using the data from the historical database and expert knowledge. The near-optimal path planning problem is formulated with an optimal coordination control problem, and an online integral reinforcement learning algorithm is proposed to iteratively interact with the environment to obtain a near-optimal path. Simulation results are provided to verify the effectiveness of the proposed methods.\",\"PeriodicalId\":100624,\"journal\":{\"name\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"volume\":\"4 3\",\"pages\":\"320-328\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10172334/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10172334/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了复杂博弈中多智能体系统在有界状态、防撞、外部干扰和部分未知非线性动力学条件下的最优实时决策和近最优路径规划问题,并将其应用于无人机。建立了基于邻域信息的均值场决策模型,将决策问题转化为Bellman方程求解问题。提出了一种数据驱动的动态规划算法来求解Bellman方程,并利用历史数据库中的数据和专家知识生成最优策略。将近最优路径规划问题与最优协调控制问题相结合,提出了一种在线积分强化学习算法,与环境迭代交互以获得近最优路径。仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Decision Making and Near-Optimal Path Planning for Multiagent System in Games
In this article, the optimal real-time decision making and near-optimal path planning problem for multiagent systems subject to bounded state, collision avoidance, external disturbance, and partially unknown nonlinear dynamics of the multiagent system in complex games, is addressed and applied to the unmanned aerial vehicle. A mean-field decision-making model based on the neighbor information is established to transform the decision-making problem into a Bellman equation solving problem. A data-driven dynamic programming algorithm is proposed to solve the Bellman equation and generate an optimal strategy using the data from the historical database and expert knowledge. The near-optimal path planning problem is formulated with an optimal coordination control problem, and an online integral reinforcement learning algorithm is proposed to iteratively interact with the environment to obtain a near-optimal path. Simulation results are provided to verify the effectiveness of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1