{"title":"薛定谔氢原子内的电子波轨迹及其相对论性结果","authors":"Leslie Smith","doi":"10.1007/s10701-023-00722-w","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum mechanics teaches that before detection, knowledge of particle position is, at best, probabilistic, and classical trajectories are seen as a feature of the macroscopic world. These comments refer to detected particles, but we are still free to consider the motions generated by the wave equation. Within hydrogen, the Schrodinger equation allows calculation of kinetic energy at any location, and if this is identified as the energy of the wave, then radial momentum, allowing for spherical harmonics, becomes available. The distance across the real zone of radial momentum is found to match semi-integer wavelengths of the adjusted matter wave, consistent with what is expected from a standing wave condition. The approach is extended to include orbital motions, where it is established that the underlying wave, which has direction and wavelength at each location, forms a series of connected trajectories, which are shown to be ellipses orientated at various angles to the equatorial plane. This suggests that wave trajectories, rather than particle trajectories, are still a feature of the hydrogen atom. The finding allows the reason for the coincidence between energy results derived by Sommerfeld’s classical trajectories and the Schrodinger wave equation to be appreciated. The result has implications when the relativistic situation is considered, as Sommerfeld’s correct deduction of the relativistic energy levels of hydrogen well before Dirac derived his wave equation has long been somewhat puzzling.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"53 5","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron Wave Trajectories Within Schrodinger’s Hydrogen Atom, and Relativistic Consequences\",\"authors\":\"Leslie Smith\",\"doi\":\"10.1007/s10701-023-00722-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum mechanics teaches that before detection, knowledge of particle position is, at best, probabilistic, and classical trajectories are seen as a feature of the macroscopic world. These comments refer to detected particles, but we are still free to consider the motions generated by the wave equation. Within hydrogen, the Schrodinger equation allows calculation of kinetic energy at any location, and if this is identified as the energy of the wave, then radial momentum, allowing for spherical harmonics, becomes available. The distance across the real zone of radial momentum is found to match semi-integer wavelengths of the adjusted matter wave, consistent with what is expected from a standing wave condition. The approach is extended to include orbital motions, where it is established that the underlying wave, which has direction and wavelength at each location, forms a series of connected trajectories, which are shown to be ellipses orientated at various angles to the equatorial plane. This suggests that wave trajectories, rather than particle trajectories, are still a feature of the hydrogen atom. The finding allows the reason for the coincidence between energy results derived by Sommerfeld’s classical trajectories and the Schrodinger wave equation to be appreciated. The result has implications when the relativistic situation is considered, as Sommerfeld’s correct deduction of the relativistic energy levels of hydrogen well before Dirac derived his wave equation has long been somewhat puzzling.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"53 5\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-023-00722-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00722-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Electron Wave Trajectories Within Schrodinger’s Hydrogen Atom, and Relativistic Consequences
Quantum mechanics teaches that before detection, knowledge of particle position is, at best, probabilistic, and classical trajectories are seen as a feature of the macroscopic world. These comments refer to detected particles, but we are still free to consider the motions generated by the wave equation. Within hydrogen, the Schrodinger equation allows calculation of kinetic energy at any location, and if this is identified as the energy of the wave, then radial momentum, allowing for spherical harmonics, becomes available. The distance across the real zone of radial momentum is found to match semi-integer wavelengths of the adjusted matter wave, consistent with what is expected from a standing wave condition. The approach is extended to include orbital motions, where it is established that the underlying wave, which has direction and wavelength at each location, forms a series of connected trajectories, which are shown to be ellipses orientated at various angles to the equatorial plane. This suggests that wave trajectories, rather than particle trajectories, are still a feature of the hydrogen atom. The finding allows the reason for the coincidence between energy results derived by Sommerfeld’s classical trajectories and the Schrodinger wave equation to be appreciated. The result has implications when the relativistic situation is considered, as Sommerfeld’s correct deduction of the relativistic energy levels of hydrogen well before Dirac derived his wave equation has long been somewhat puzzling.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.