gpu并行动态偶然性分析的可配置层次结构

IF 3.3 Q3 ENERGY & FUELS IEEE Open Access Journal of Power and Energy Pub Date : 2023-01-01 DOI:10.1109/OAJPE.2022.3227800
Cong Wang;Suangshuang Jin;Renke Huang;Qiuhua Huang;Yousu Chen
{"title":"gpu并行动态偶然性分析的可配置层次结构","authors":"Cong Wang;Suangshuang Jin;Renke Huang;Qiuhua Huang;Yousu Chen","doi":"10.1109/OAJPE.2022.3227800","DOIUrl":null,"url":null,"abstract":"Dynamic contingency analysis (DCA) for modern power systems is fundamental to help researchers and operators look ahead of potential issues, arrange operational plans, and improve system stabilities. However, since the system size and the number of contingency scenarios continue to increase, pursuing more effective computational performance faces many difficulties, such as slow algorithms and limited computing resources. This research accelerates the intensive computations of massive DCAs by implementing a two-level hierarchical computing architecture on graphical processing units (GPUs). The performance of the designed method is examined using four test systems of different sizes and compared with a CPU-based parallel approach. The results show up to 2.8x speedup using one GPU and 4.2x speedup using two GPUs, respectively. More accelerations can be observed once more GPUs are configured. It demonstrates that the proposed architecture can significantly enhance the overall computational performance of massive DCAs while maintaining a strong scaling capability under various resource configurations.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784343/9999142/09976887.pdf","citationCount":"3","resultStr":"{\"title\":\"A Configurable Hierarchical Architecture for Parallel Dynamic Contingency Analysis on GPUs\",\"authors\":\"Cong Wang;Suangshuang Jin;Renke Huang;Qiuhua Huang;Yousu Chen\",\"doi\":\"10.1109/OAJPE.2022.3227800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic contingency analysis (DCA) for modern power systems is fundamental to help researchers and operators look ahead of potential issues, arrange operational plans, and improve system stabilities. However, since the system size and the number of contingency scenarios continue to increase, pursuing more effective computational performance faces many difficulties, such as slow algorithms and limited computing resources. This research accelerates the intensive computations of massive DCAs by implementing a two-level hierarchical computing architecture on graphical processing units (GPUs). The performance of the designed method is examined using four test systems of different sizes and compared with a CPU-based parallel approach. The results show up to 2.8x speedup using one GPU and 4.2x speedup using two GPUs, respectively. More accelerations can be observed once more GPUs are configured. It demonstrates that the proposed architecture can significantly enhance the overall computational performance of massive DCAs while maintaining a strong scaling capability under various resource configurations.\",\"PeriodicalId\":56187,\"journal\":{\"name\":\"IEEE Open Access Journal of Power and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8784343/9999142/09976887.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Access Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9976887/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9976887/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

摘要

现代电力系统的动态应急分析(DCA)是帮助研究人员和操作人员提前发现潜在问题、安排运行计划和提高系统稳定性的基础。然而,随着系统规模和突发场景数量的不断增加,追求更有效的计算性能面临着许多困难,例如算法缓慢和计算资源有限。本研究通过在图形处理单元(gpu)上实现两级分层计算架构来加速大规模dca的密集计算。采用四个不同尺寸的测试系统对所设计方法的性能进行了测试,并与基于cpu的并行方法进行了比较。结果显示,使用一个GPU加速高达2.8倍,使用两个GPU加速高达4.2倍。一旦配置了更多的gpu,可以观察到更多的加速。结果表明,该架构可以显著提高大规模dca的整体计算性能,同时在各种资源配置下保持较强的扩展能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Configurable Hierarchical Architecture for Parallel Dynamic Contingency Analysis on GPUs
Dynamic contingency analysis (DCA) for modern power systems is fundamental to help researchers and operators look ahead of potential issues, arrange operational plans, and improve system stabilities. However, since the system size and the number of contingency scenarios continue to increase, pursuing more effective computational performance faces many difficulties, such as slow algorithms and limited computing resources. This research accelerates the intensive computations of massive DCAs by implementing a two-level hierarchical computing architecture on graphical processing units (GPUs). The performance of the designed method is examined using four test systems of different sizes and compared with a CPU-based parallel approach. The results show up to 2.8x speedup using one GPU and 4.2x speedup using two GPUs, respectively. More accelerations can be observed once more GPUs are configured. It demonstrates that the proposed architecture can significantly enhance the overall computational performance of massive DCAs while maintaining a strong scaling capability under various resource configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
期刊最新文献
A Novel Dual-Rotor Homopolar AC Machine Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-Learning Data Driven Real-Time Dynamic Voltage Control Using Decentralized Execution Multi-Agent Deep Reinforcement Learning Global Research Priorities for Holistic Integration of Water and Power Systems Floating Neutral Detection Using Actual Generation of Form 2S Meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1