专题:新兴设备的节能内存计算

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2022-12-01 DOI:10.1109/JXCDC.2022.3231764
Jae-Sun Seo
{"title":"专题:新兴设备的节能内存计算","authors":"Jae-Sun Seo","doi":"10.1109/JXCDC.2022.3231764","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) have shown extraordinary performance in recent years for various applications including image classification, object detection, speech recognition, natural language processing, etc. Accuracydriven DNN architectures tend to increase the model sizes and computations at a very fast pace, demanding a massive amount of hardware resources. Frequent communication between the processing engine and the ON-/OFF-chip memory leads to high energy consumption, which becomes a bottleneck for the conventional DNN accelerator design.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9969523/10006410.pdf","citationCount":"0","resultStr":"{\"title\":\"Special Topic on Energy-Efficient Compute-in-Memory With Emerging Devices\",\"authors\":\"Jae-Sun Seo\",\"doi\":\"10.1109/JXCDC.2022.3231764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks (DNNs) have shown extraordinary performance in recent years for various applications including image classification, object detection, speech recognition, natural language processing, etc. Accuracydriven DNN architectures tend to increase the model sizes and computations at a very fast pace, demanding a massive amount of hardware resources. Frequent communication between the processing engine and the ON-/OFF-chip memory leads to high energy consumption, which becomes a bottleneck for the conventional DNN accelerator design.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6570653/9969523/10006410.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10006410/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10006410/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,深度神经网络(dnn)在图像分类、目标检测、语音识别、自然语言处理等各种应用中表现出了非凡的性能。精度驱动的深度神经网络架构倾向于以非常快的速度增加模型大小和计算,需要大量的硬件资源。处理引擎与开/关芯片存储器之间的频繁通信导致了高能耗,这成为传统DNN加速器设计的瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Special Topic on Energy-Efficient Compute-in-Memory With Emerging Devices
Deep neural networks (DNNs) have shown extraordinary performance in recent years for various applications including image classification, object detection, speech recognition, natural language processing, etc. Accuracydriven DNN architectures tend to increase the model sizes and computations at a very fast pace, demanding a massive amount of hardware resources. Frequent communication between the processing engine and the ON-/OFF-chip memory leads to high energy consumption, which becomes a bottleneck for the conventional DNN accelerator design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
Design Considerations for Sub-1-V 1T1C FeRAM Memory Circuits Heterogeneous Integration Technologies for Artificial Intelligence Applications Scaling Logic Area With Multitier Standard Cells Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory Energy-/Carbon-Aware Evaluation and Optimization of 3-D IC Architecture With Digital Compute-in-Memory Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1