咪唑基质子离子液体对NH3吸收机理的理论见解

Wenhui Tu, Shaojuan Zeng, Yinge Bai, Xiaochun Zhang, Haifeng Dong and Xiangping Zhang
{"title":"咪唑基质子离子液体对NH3吸收机理的理论见解","authors":"Wenhui Tu, Shaojuan Zeng, Yinge Bai, Xiaochun Zhang, Haifeng Dong and Xiangping Zhang","doi":"10.1039/D2IM00041E","DOIUrl":null,"url":null,"abstract":"<p>Ionic liquids (ILs) provide a promising way for efficient absorption and separation of ammonia (NH<small><sub>3</sub></small>) due to their extremely low vapor pressures and adjustable structures. However, the understanding of absorption mechanisms especially in terms of theoretical insights is still not very clear, which is crucial for designing targeted ILs. In this work, a universal method that integrates density functional theory and molecular dynamic simulations was proposed to study the mechanisms of NH<small><sub>3</sub></small> absorption by protic ionic liquids (PILs). The results showed that the NH<small><sub>3</sub></small> absorption performance of the imidazolium-based PILs ([BIm][X], X= Tf<small><sub>2</sub></small>N, SCN and NO<small><sub>3</sub></small>) is determined by not only the hydrogen bonding between the N atom in NH<small><sub>3</sub></small> and the protic site (H–N<small><sup>3</sup></small>) on the cation but also the cation–anion interaction. With the increase in NH<small><sub>3</sub></small> absorption capacity, the hydrogen bonding between [BIm][Tf<small><sub>2</sub></small>N] and NH<small><sub>3</sub></small> changed from orbital dominated to electrostatic dominated, so 3.0 mol NH<small><sub>3</sub></small> per mol IL at 313.15 K and 0.10 MPa was further proved as a threshold for NH<small><sub>3</sub></small> capacity of [BIm][Tf<small><sub>2</sub></small>N] by the Gibbs free energy results, which agrees well with the experimental results. Furthermore, the anions of [BIm][X] could also compete with NH<small><sub>3</sub></small> for interaction with H-N<small><sup>3</sup></small> of the cation, which weakens the interaction between the cation and NH<small><sub>3</sub></small> and then decreases the NH<small><sub>3</sub></small> absorption ability of PILs. This study provides further understanding on NH<small><sub>3</sub></small> absorption mechanisms with ILs, which will guide the design of novel functionalized ILs for NH<small><sub>3</sub></small> separation and recovery.</p><p>Keywords: Protic ionic liquids; NH<small><sub>3</sub></small> absorption; Interaction mechanisms; Simulation calculations.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d2im00041e?page=search","citationCount":"2","resultStr":"{\"title\":\"Theoretical insights into NH3 absorption mechanisms with imidazolium-based protic ionic liquids†\",\"authors\":\"Wenhui Tu, Shaojuan Zeng, Yinge Bai, Xiaochun Zhang, Haifeng Dong and Xiangping Zhang\",\"doi\":\"10.1039/D2IM00041E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ionic liquids (ILs) provide a promising way for efficient absorption and separation of ammonia (NH<small><sub>3</sub></small>) due to their extremely low vapor pressures and adjustable structures. However, the understanding of absorption mechanisms especially in terms of theoretical insights is still not very clear, which is crucial for designing targeted ILs. In this work, a universal method that integrates density functional theory and molecular dynamic simulations was proposed to study the mechanisms of NH<small><sub>3</sub></small> absorption by protic ionic liquids (PILs). The results showed that the NH<small><sub>3</sub></small> absorption performance of the imidazolium-based PILs ([BIm][X], X= Tf<small><sub>2</sub></small>N, SCN and NO<small><sub>3</sub></small>) is determined by not only the hydrogen bonding between the N atom in NH<small><sub>3</sub></small> and the protic site (H–N<small><sup>3</sup></small>) on the cation but also the cation–anion interaction. With the increase in NH<small><sub>3</sub></small> absorption capacity, the hydrogen bonding between [BIm][Tf<small><sub>2</sub></small>N] and NH<small><sub>3</sub></small> changed from orbital dominated to electrostatic dominated, so 3.0 mol NH<small><sub>3</sub></small> per mol IL at 313.15 K and 0.10 MPa was further proved as a threshold for NH<small><sub>3</sub></small> capacity of [BIm][Tf<small><sub>2</sub></small>N] by the Gibbs free energy results, which agrees well with the experimental results. Furthermore, the anions of [BIm][X] could also compete with NH<small><sub>3</sub></small> for interaction with H-N<small><sup>3</sup></small> of the cation, which weakens the interaction between the cation and NH<small><sub>3</sub></small> and then decreases the NH<small><sub>3</sub></small> absorption ability of PILs. This study provides further understanding on NH<small><sub>3</sub></small> absorption mechanisms with ILs, which will guide the design of novel functionalized ILs for NH<small><sub>3</sub></small> separation and recovery.</p><p>Keywords: Protic ionic liquids; NH<small><sub>3</sub></small> absorption; Interaction mechanisms; Simulation calculations.</p>\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2023/im/d2im00041e?page=search\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/im/d2im00041e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d2im00041e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

离子液体由于其极低的蒸汽压和可调节的结构,为高效吸收和分离氨(NH3)提供了一种很有前途的方法。然而,对吸收机制的理解,特别是在理论方面的认识仍然不是很清楚,这对于设计靶向il至关重要。本文提出了一种结合密度泛函理论和分子动力学模拟的通用方法来研究质子离子液体(pil)吸收NH3的机理。结果表明,咪唑基PILs ([BIm][X], X= Tf2N, SCN和NO3)对NH3的吸收性能不仅取决于NH3中N原子与阳离子上质子位点(H-N3)之间的氢键作用,还取决于正负离子相互作用。随着NH3吸收能力的增加,[BIm][Tf2N]与NH3之间的氢键由轨道主导转变为静电主导,因此在313.15 K和0.10 MPa下,Gibbs自由能结果进一步证明了3.0 mol NH3 / mol IL是[BIm][Tf2N] NH3容量的阈值,与实验结果吻合较好。此外,[BIm][X]的阴离子也可以与NH3竞争与阳离子的H-N3相互作用,从而减弱阳离子与NH3的相互作用,从而降低了pil对NH3的吸收能力。本研究为进一步了解il对NH3的吸附机理提供了依据,为设计新型功能化il对NH3的分离和回收提供了指导。关键词:质子离子液体;氨吸收;交互机制;仿真计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical insights into NH3 absorption mechanisms with imidazolium-based protic ionic liquids†

Ionic liquids (ILs) provide a promising way for efficient absorption and separation of ammonia (NH3) due to their extremely low vapor pressures and adjustable structures. However, the understanding of absorption mechanisms especially in terms of theoretical insights is still not very clear, which is crucial for designing targeted ILs. In this work, a universal method that integrates density functional theory and molecular dynamic simulations was proposed to study the mechanisms of NH3 absorption by protic ionic liquids (PILs). The results showed that the NH3 absorption performance of the imidazolium-based PILs ([BIm][X], X= Tf2N, SCN and NO3) is determined by not only the hydrogen bonding between the N atom in NH3 and the protic site (H–N3) on the cation but also the cation–anion interaction. With the increase in NH3 absorption capacity, the hydrogen bonding between [BIm][Tf2N] and NH3 changed from orbital dominated to electrostatic dominated, so 3.0 mol NH3 per mol IL at 313.15 K and 0.10 MPa was further proved as a threshold for NH3 capacity of [BIm][Tf2N] by the Gibbs free energy results, which agrees well with the experimental results. Furthermore, the anions of [BIm][X] could also compete with NH3 for interaction with H-N3 of the cation, which weakens the interaction between the cation and NH3 and then decreases the NH3 absorption ability of PILs. This study provides further understanding on NH3 absorption mechanisms with ILs, which will guide the design of novel functionalized ILs for NH3 separation and recovery.

Keywords: Protic ionic liquids; NH3 absorption; Interaction mechanisms; Simulation calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
期刊最新文献
Membrane-free sequential paired electrosynthesis of 1,4-hydroquinone from phenol over a self-supported electrocatalytic electrode Back cover Toward a low-cost uranium-adsorbing material based on nonwoven fabrics and photografting technology Depolymerization of PET with Ethanol by Homogeneous Iron Catalysts Applied for Exclusive Chemical Recycling of Cloth Waste Introduction to the themed issue on liquid-based materials: novel concepts from fundamentals to applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1