Catriona M. Willoughby, Cairistiona F. E. Topp, Paul D. Hallett, Elizabeth A. Stockdale, Robin L. Walker, Alex J. Hilton, Christine A. Watson
{"title":"土壤健康指标反映了长期种植制度试验中的产量","authors":"Catriona M. Willoughby, Cairistiona F. E. Topp, Paul D. Hallett, Elizabeth A. Stockdale, Robin L. Walker, Alex J. Hilton, Christine A. Watson","doi":"10.1007/s13593-023-00919-3","DOIUrl":null,"url":null,"abstract":"<div><p>Soil health metrics with strong links to ecological function and agricultural productivity are needed to ensure that future management of agricultural systems meets sustainability goals. While ecological metrics and crop yields are often considered separately from one another, our work sought to assess the links between the two in an agricultural context where productivity is a key consideration. Here, we investigated the value of soil health tests in terms of their relevance to agricultural management practices and crop yields at contrasting long term cropping systems experiments. One site was on a sandy loam Leptic Podzol and the other on a sandy clay loam Endostagnic Luvisol. Furthermore, the experiments had different management systems. One contained legume-supported rotations with different grass-clover ley durations and organic amendment usage, while the other compared a range of nutrient input options through fertiliser and organic amendments on the same rotation without ley periods. Metrics included field tests (earthworm counts and visual evaluation of soil structure scores) with laboratory analysis of soil structure, chemistry and biology. This analysis included bulk density, macroporosity, pH, available phosphorus, exchangeable potassium, soil organic matter and potentially mineralizable nitrogen. Using a novel combination of long-term experiments, management systems and distinctive soil types, we demonstrated that as well as providing nutrients, agricultural management which resulted in better soil organic matter, pH, potassium and bulk density was correlated with higher crop yields. The importance of ley duration and potentially mineralizable nitrogen to yield in legume-supported systems showed the impact of agricultural management on soil biology. In systems with applications of synthetic fertiliser, earthworm counts and visual evaluation of soil structure scores were correlated with higher yields. We concluded that agricultural management altered yields not just through direct supply of nutrients to crops, but also through the changes in soil health measured by simple metrics.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"43 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-023-00919-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Soil health metrics reflect yields in long-term cropping system experiments\",\"authors\":\"Catriona M. Willoughby, Cairistiona F. E. Topp, Paul D. Hallett, Elizabeth A. Stockdale, Robin L. Walker, Alex J. Hilton, Christine A. Watson\",\"doi\":\"10.1007/s13593-023-00919-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil health metrics with strong links to ecological function and agricultural productivity are needed to ensure that future management of agricultural systems meets sustainability goals. While ecological metrics and crop yields are often considered separately from one another, our work sought to assess the links between the two in an agricultural context where productivity is a key consideration. Here, we investigated the value of soil health tests in terms of their relevance to agricultural management practices and crop yields at contrasting long term cropping systems experiments. One site was on a sandy loam Leptic Podzol and the other on a sandy clay loam Endostagnic Luvisol. Furthermore, the experiments had different management systems. One contained legume-supported rotations with different grass-clover ley durations and organic amendment usage, while the other compared a range of nutrient input options through fertiliser and organic amendments on the same rotation without ley periods. Metrics included field tests (earthworm counts and visual evaluation of soil structure scores) with laboratory analysis of soil structure, chemistry and biology. This analysis included bulk density, macroporosity, pH, available phosphorus, exchangeable potassium, soil organic matter and potentially mineralizable nitrogen. Using a novel combination of long-term experiments, management systems and distinctive soil types, we demonstrated that as well as providing nutrients, agricultural management which resulted in better soil organic matter, pH, potassium and bulk density was correlated with higher crop yields. The importance of ley duration and potentially mineralizable nitrogen to yield in legume-supported systems showed the impact of agricultural management on soil biology. In systems with applications of synthetic fertiliser, earthworm counts and visual evaluation of soil structure scores were correlated with higher yields. We concluded that agricultural management altered yields not just through direct supply of nutrients to crops, but also through the changes in soil health measured by simple metrics.</p></div>\",\"PeriodicalId\":7721,\"journal\":{\"name\":\"Agronomy for Sustainable Development\",\"volume\":\"43 5\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13593-023-00919-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy for Sustainable Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13593-023-00919-3\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy for Sustainable Development","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s13593-023-00919-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Soil health metrics reflect yields in long-term cropping system experiments
Soil health metrics with strong links to ecological function and agricultural productivity are needed to ensure that future management of agricultural systems meets sustainability goals. While ecological metrics and crop yields are often considered separately from one another, our work sought to assess the links between the two in an agricultural context where productivity is a key consideration. Here, we investigated the value of soil health tests in terms of their relevance to agricultural management practices and crop yields at contrasting long term cropping systems experiments. One site was on a sandy loam Leptic Podzol and the other on a sandy clay loam Endostagnic Luvisol. Furthermore, the experiments had different management systems. One contained legume-supported rotations with different grass-clover ley durations and organic amendment usage, while the other compared a range of nutrient input options through fertiliser and organic amendments on the same rotation without ley periods. Metrics included field tests (earthworm counts and visual evaluation of soil structure scores) with laboratory analysis of soil structure, chemistry and biology. This analysis included bulk density, macroporosity, pH, available phosphorus, exchangeable potassium, soil organic matter and potentially mineralizable nitrogen. Using a novel combination of long-term experiments, management systems and distinctive soil types, we demonstrated that as well as providing nutrients, agricultural management which resulted in better soil organic matter, pH, potassium and bulk density was correlated with higher crop yields. The importance of ley duration and potentially mineralizable nitrogen to yield in legume-supported systems showed the impact of agricultural management on soil biology. In systems with applications of synthetic fertiliser, earthworm counts and visual evaluation of soil structure scores were correlated with higher yields. We concluded that agricultural management altered yields not just through direct supply of nutrients to crops, but also through the changes in soil health measured by simple metrics.
期刊介绍:
Agronomy for Sustainable Development (ASD) is a peer-reviewed scientific journal of international scope, dedicated to publishing original research articles, review articles, and meta-analyses aimed at improving sustainability in agricultural and food systems. The journal serves as a bridge between agronomy, cropping, and farming system research and various other disciplines including ecology, genetics, economics, and social sciences.
ASD encourages studies in agroecology, participatory research, and interdisciplinary approaches, with a focus on systems thinking applied at different scales from field to global levels.
Research articles published in ASD should present significant scientific advancements compared to existing knowledge, within an international context. Review articles should critically evaluate emerging topics, and opinion papers may also be submitted as reviews. Meta-analysis articles should provide clear contributions to resolving widely debated scientific questions.