脑电k复合体精细诊断方法的建立,辅助人工智能检测阿尔茨海默病

Rushikesh Pandya, Shrey Nadiadwala, Rajvi Shah, Manan Shah
{"title":"脑电k复合体精细诊断方法的建立,辅助人工智能检测阿尔茨海默病","authors":"Rushikesh Pandya,&nbsp;Shrey Nadiadwala,&nbsp;Rajvi Shah,&nbsp;Manan Shah","doi":"10.1007/s41133-019-0021-6","DOIUrl":null,"url":null,"abstract":"<div><p>Application of artificial intelligence (AI) in health-care detection is a domain of exceptional research and interest in today’s world. And hence among this domain, a considerable inclination is toward creating a smart system that is AI for aiding identification of brain-related disease—Alzheimer’s—using electroencephalogram (EEG). Certain AI-based techniques as well as systems have been created for EEG examination and interpretation, but they have a common drawback that is lack of shrewdness and acuteness. Therefore, to overcome these drawbacks, a different methodology or technique is suggested in this paper which is able to mold the AI technique for better EEG Cz strip K-complex identification. This suggested method and structure of AI detection system is relied on quantitative scrutinization of Cz strip and embedding-established EEG explication principles for detection of K-complex and Alzheimer’s. This technique unconditionally relied on facts and information of neuroscience that are applied by expert in health care such as neurologist to create a detailed review of sick person’s EEG. The suggested technique also allots a potential of learning on its own to the AI so that it can apply the events in future examinations.</p></div>","PeriodicalId":100147,"journal":{"name":"Augmented Human Research","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41133-019-0021-6","citationCount":"41","resultStr":"{\"title\":\"Buildout of Methodology for Meticulous Diagnosis of K-Complex in EEG for Aiding the Detection of Alzheimer’s by Artificial Intelligence\",\"authors\":\"Rushikesh Pandya,&nbsp;Shrey Nadiadwala,&nbsp;Rajvi Shah,&nbsp;Manan Shah\",\"doi\":\"10.1007/s41133-019-0021-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Application of artificial intelligence (AI) in health-care detection is a domain of exceptional research and interest in today’s world. And hence among this domain, a considerable inclination is toward creating a smart system that is AI for aiding identification of brain-related disease—Alzheimer’s—using electroencephalogram (EEG). Certain AI-based techniques as well as systems have been created for EEG examination and interpretation, but they have a common drawback that is lack of shrewdness and acuteness. Therefore, to overcome these drawbacks, a different methodology or technique is suggested in this paper which is able to mold the AI technique for better EEG Cz strip K-complex identification. This suggested method and structure of AI detection system is relied on quantitative scrutinization of Cz strip and embedding-established EEG explication principles for detection of K-complex and Alzheimer’s. This technique unconditionally relied on facts and information of neuroscience that are applied by expert in health care such as neurologist to create a detailed review of sick person’s EEG. The suggested technique also allots a potential of learning on its own to the AI so that it can apply the events in future examinations.</p></div>\",\"PeriodicalId\":100147,\"journal\":{\"name\":\"Augmented Human Research\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41133-019-0021-6\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Augmented Human Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41133-019-0021-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Augmented Human Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41133-019-0021-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

人工智能(AI)在医疗保健检测中的应用是当今世界的一个特殊研究和兴趣领域。因此,在这个领域中,一个相当大的倾向是创建一个智能系统,即人工智能,用于帮助识别与大脑相关的疾病——阿尔茨海默病——使用脑电图(EEG)。一些基于人工智能的技术和系统已经被用于脑电图检查和解释,但它们都有一个共同的缺点,即缺乏精明和敏锐。因此,为了克服这些缺点,本文提出了一种不同的方法或技术,该方法或技术能够塑造更好的EEG Cz条k复合体识别的AI技术。本文提出的人工智能检测系统的方法和结构依赖于Cz条的定量检查和嵌入建立的脑电解释原理来检测k复合物和阿尔茨海默病。这种技术无条件地依赖于神经科学的事实和信息,这些事实和信息是由神经学家等卫生保健专家应用的,以创建病人脑电图的详细审查。建议的技术还为人工智能分配了自主学习的潜力,以便它可以在未来的考试中应用这些事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Buildout of Methodology for Meticulous Diagnosis of K-Complex in EEG for Aiding the Detection of Alzheimer’s by Artificial Intelligence

Application of artificial intelligence (AI) in health-care detection is a domain of exceptional research and interest in today’s world. And hence among this domain, a considerable inclination is toward creating a smart system that is AI for aiding identification of brain-related disease—Alzheimer’s—using electroencephalogram (EEG). Certain AI-based techniques as well as systems have been created for EEG examination and interpretation, but they have a common drawback that is lack of shrewdness and acuteness. Therefore, to overcome these drawbacks, a different methodology or technique is suggested in this paper which is able to mold the AI technique for better EEG Cz strip K-complex identification. This suggested method and structure of AI detection system is relied on quantitative scrutinization of Cz strip and embedding-established EEG explication principles for detection of K-complex and Alzheimer’s. This technique unconditionally relied on facts and information of neuroscience that are applied by expert in health care such as neurologist to create a detailed review of sick person’s EEG. The suggested technique also allots a potential of learning on its own to the AI so that it can apply the events in future examinations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Haptic Gamer Suit for Enhancing VR Games Experience Retraction Note: Application on Virtual Reality for Enhanced Education Learning, Military Training and Sports The Impact of Transferring Embodiment and Work Efficiency Between Natural Body and Modular Body Systems Smart Life Saver Jacket: A New Jacket to Support CPR Operation Unraveling the Ethical Conundrum of Artificial Intelligence: A Synthesis of Literature and Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1