广义相对论框架下深空探测器巡航相位轨迹重构:在卡西尼号引力波实验中的应用

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrodynamics Pub Date : 2023-04-15 DOI:10.1007/s42064-023-0160-x
Joseph O’Leary, Jean-Pierre Barriot
{"title":"广义相对论框架下深空探测器巡航相位轨迹重构:在卡西尼号引力波实验中的应用","authors":"Joseph O’Leary,&nbsp;Jean-Pierre Barriot","doi":"10.1007/s42064-023-0160-x","DOIUrl":null,"url":null,"abstract":"<div><p>Einstein’s theory of general relativity is playing an increasingly important role in fields such as interplanetary navigation, astrometry, and metrology. Modern spacecraft and interplanetary probe prediction and estimation platforms employ a perturbed Newtonian framework, supplemented with the Einstein-Infeld-Hoffmann <i>n</i>-body equations of motion. While time in Newtonian mechanics is formally universal, the accuracy of modern radiometric tracking systems necessitate linear corrections via increasingly complex and error-prone post-Newtonian techniques—to account for light deflection due to the solar system bodies. With flagship projects such as the ESA/JAXA BepiColombo mission now operating at unprecedented levels of accuracy, we believe the standard corrected Newtonian paradigm is approaching its limits in terms of complexity. In this paper, we employ a novel prototype software, General Relativistic Accelerometer-based Propagation Environment, to reconstruct the Cassini cruise-phase trajectory during its first gravitational wave experiment in a fully relativistic framework. The results presented herein agree with post-processed trajectory information obtained from NASA’s SPICE kernels at the order of centimetres.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-023-0160-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Reconstructing the cruise-phase trajectory of deep-space probes in a general relativistic framework: An application to the Cassini gravitational wave experiment\",\"authors\":\"Joseph O’Leary,&nbsp;Jean-Pierre Barriot\",\"doi\":\"10.1007/s42064-023-0160-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Einstein’s theory of general relativity is playing an increasingly important role in fields such as interplanetary navigation, astrometry, and metrology. Modern spacecraft and interplanetary probe prediction and estimation platforms employ a perturbed Newtonian framework, supplemented with the Einstein-Infeld-Hoffmann <i>n</i>-body equations of motion. While time in Newtonian mechanics is formally universal, the accuracy of modern radiometric tracking systems necessitate linear corrections via increasingly complex and error-prone post-Newtonian techniques—to account for light deflection due to the solar system bodies. With flagship projects such as the ESA/JAXA BepiColombo mission now operating at unprecedented levels of accuracy, we believe the standard corrected Newtonian paradigm is approaching its limits in terms of complexity. In this paper, we employ a novel prototype software, General Relativistic Accelerometer-based Propagation Environment, to reconstruct the Cassini cruise-phase trajectory during its first gravitational wave experiment in a fully relativistic framework. The results presented herein agree with post-processed trajectory information obtained from NASA’s SPICE kernels at the order of centimetres.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42064-023-0160-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-023-0160-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0160-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

爱因斯坦的广义相对论在星际导航、天体测量和计量学等领域发挥着越来越重要的作用。现代航天器和行星际探测器的预测和估计平台采用了扰动牛顿框架,并辅以爱因斯坦-因费尔德-霍夫曼n体运动方程。虽然牛顿力学中的时间在形式上是普遍的,但现代辐射跟踪系统的精度需要通过越来越复杂和容易出错的后牛顿技术进行线性校正,以解释太阳系天体引起的光偏转。随着欧空局/宇宙航空研究开发机构BepiColombo任务等旗舰项目以前所未有的精度运行,我们相信标准修正牛顿范式在复杂性方面正在接近极限。在本文中,我们使用了一个新的原型软件,基于通用相对论加速度计的传播环境,在完全相对论的框架下重建卡西尼号第一次引力波实验期间的巡航阶段轨迹。本文给出的结果与从美国国家航空航天局SPICE内核获得的后处理轨迹信息一致,以厘米为单位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstructing the cruise-phase trajectory of deep-space probes in a general relativistic framework: An application to the Cassini gravitational wave experiment

Einstein’s theory of general relativity is playing an increasingly important role in fields such as interplanetary navigation, astrometry, and metrology. Modern spacecraft and interplanetary probe prediction and estimation platforms employ a perturbed Newtonian framework, supplemented with the Einstein-Infeld-Hoffmann n-body equations of motion. While time in Newtonian mechanics is formally universal, the accuracy of modern radiometric tracking systems necessitate linear corrections via increasingly complex and error-prone post-Newtonian techniques—to account for light deflection due to the solar system bodies. With flagship projects such as the ESA/JAXA BepiColombo mission now operating at unprecedented levels of accuracy, we believe the standard corrected Newtonian paradigm is approaching its limits in terms of complexity. In this paper, we employ a novel prototype software, General Relativistic Accelerometer-based Propagation Environment, to reconstruct the Cassini cruise-phase trajectory during its first gravitational wave experiment in a fully relativistic framework. The results presented herein agree with post-processed trajectory information obtained from NASA’s SPICE kernels at the order of centimetres.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
期刊最新文献
Reinforced Lyapunov controllers for low-thrust lunar transfers Aerogel-based collection of ejecta material from asteroids from libration point orbits: Dynamics and capture design Minimum-time rendezvous for Sun-facing diffractive solar sails with diverse deflection angles Designing a concurrent detumbling and redirection mission for asteroid mining purposes via optimization Luring cooperative capture guidance strategy for the pursuit—evasion game under incomplete target information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1