基于加权遗传算法和深度学习模型的高光谱图像目标分类

IF 2.3 Q2 REMOTE SENSING Applied Geomatics Pub Date : 2023-02-27 DOI:10.1007/s12518-023-00500-3
Davood Akbari, Vahid Akbari
{"title":"基于加权遗传算法和深度学习模型的高光谱图像目标分类","authors":"Davood Akbari,&nbsp;Vahid Akbari","doi":"10.1007/s12518-023-00500-3","DOIUrl":null,"url":null,"abstract":"<div><p>Numerous uses of the hyperspectral remote sensing technology exist for identifying land cover and tracking its evolution. The classification of hyperspectral images must now take into account both spectral and spatial information due to recent advancements and the production of images with high spatial resolution. Convolutional neural networks (CNNs) have much employed in recent years to enhance the classification precision of hyperspectral images. The simultaneous use of spatial feature extraction methods in CNNs has not received significant attention in prior studies. In this study, a novel CNN architecture has been developed for classifying hyperspectral images. The weighted genetic (WG) algorithm is used in the proposed technique to minimize the hyperspectral image’s dimensions. The WG algorithm keeps every band in the image and gives each one weight between zero and one based on how much information it contains. Following the expectation maximization (EM) method to the collected features, the segmented objects are then categorized using the CNN algorithm. Three benchmark hyperspectral images, Pavia, DC Mall, and Indiana Pine, were used to assess the proposed approach. The trials’ findings demonstrate the proposed approach’s superiority over the multilayer perceptron (MLP) algorithm in the Pavia, DC Mall, and Indiana Pine images by 14, 16, and 8% in the overall accuracy parameter, respectively.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12518-023-00500-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Object-based classification of hyperspectral images based on weighted genetic algorithm and deep learning model\",\"authors\":\"Davood Akbari,&nbsp;Vahid Akbari\",\"doi\":\"10.1007/s12518-023-00500-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerous uses of the hyperspectral remote sensing technology exist for identifying land cover and tracking its evolution. The classification of hyperspectral images must now take into account both spectral and spatial information due to recent advancements and the production of images with high spatial resolution. Convolutional neural networks (CNNs) have much employed in recent years to enhance the classification precision of hyperspectral images. The simultaneous use of spatial feature extraction methods in CNNs has not received significant attention in prior studies. In this study, a novel CNN architecture has been developed for classifying hyperspectral images. The weighted genetic (WG) algorithm is used in the proposed technique to minimize the hyperspectral image’s dimensions. The WG algorithm keeps every band in the image and gives each one weight between zero and one based on how much information it contains. Following the expectation maximization (EM) method to the collected features, the segmented objects are then categorized using the CNN algorithm. Three benchmark hyperspectral images, Pavia, DC Mall, and Indiana Pine, were used to assess the proposed approach. The trials’ findings demonstrate the proposed approach’s superiority over the multilayer perceptron (MLP) algorithm in the Pavia, DC Mall, and Indiana Pine images by 14, 16, and 8% in the overall accuracy parameter, respectively.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12518-023-00500-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-023-00500-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-023-00500-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

高光谱遥感技术在识别土地覆盖和跟踪其演变方面有许多用途。由于最近的进步和高空间分辨率图像的产生,高光谱图像的分类现在必须考虑光谱和空间信息。近年来,卷积神经网络(CNNs)被广泛用于提高高光谱图像的分类精度。空间特征提取方法在细胞神经网络中的同时使用在先前的研究中没有得到显著的关注。在这项研究中,开发了一种新的CNN架构来对高光谱图像进行分类。该技术采用加权遗传算法来最小化高光谱图像的维数。WG算法保留图像中的每个波段,并根据其包含的信息量为每个波段赋予0到1之间的权重。根据对收集到的特征的期望最大化(EM)方法,然后使用CNN算法对分割的对象进行分类。三个基准高光谱图像,Pavia、DC Mall和Indiana Pine,用于评估所提出的方法。试验结果表明,在Pavia、DC Mall和Indiana Pine图像中,所提出的方法在总体精度参数上分别比多层感知器(MLP)算法优越14%、16%和8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object-based classification of hyperspectral images based on weighted genetic algorithm and deep learning model

Numerous uses of the hyperspectral remote sensing technology exist for identifying land cover and tracking its evolution. The classification of hyperspectral images must now take into account both spectral and spatial information due to recent advancements and the production of images with high spatial resolution. Convolutional neural networks (CNNs) have much employed in recent years to enhance the classification precision of hyperspectral images. The simultaneous use of spatial feature extraction methods in CNNs has not received significant attention in prior studies. In this study, a novel CNN architecture has been developed for classifying hyperspectral images. The weighted genetic (WG) algorithm is used in the proposed technique to minimize the hyperspectral image’s dimensions. The WG algorithm keeps every band in the image and gives each one weight between zero and one based on how much information it contains. Following the expectation maximization (EM) method to the collected features, the segmented objects are then categorized using the CNN algorithm. Three benchmark hyperspectral images, Pavia, DC Mall, and Indiana Pine, were used to assess the proposed approach. The trials’ findings demonstrate the proposed approach’s superiority over the multilayer perceptron (MLP) algorithm in the Pavia, DC Mall, and Indiana Pine images by 14, 16, and 8% in the overall accuracy parameter, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Geomatics
Applied Geomatics REMOTE SENSING-
CiteScore
5.40
自引率
3.70%
发文量
61
期刊介绍: Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences. The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology. Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements
期刊最新文献
The effect of spatial lag on modeling geomatic covariates using analysis of variance Flood susceptibility mapping using machine learning and remote sensing data in the Southern Karun Basin, Iran Spatial assessment of groundwater potential zones using remote sensing, GIS and analytical hierarchy process: A case study of Siliguri subdivision, West Bengal Sequential Gaussian simulation for mapping the spatial variability of saturated soil hydraulic conductivity at watershed scale Geoinformatics and Analytic Hierarchy Process (AHP) in modelling groundwater potential in Obudu Plateau, Southeastern Nigeria Bamenda Massif
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1